Math 126

Your Name

Student ID #

Your Signature

Quiz Section

Professor's Name

• CHECK that your exam contains 8 problems on 8 pages.

- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around **YOUR FINAL ANSWER** to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	12	
2	12	
3	12	
4	13	
5	12	

Problem	Total Points	Score
6	13	
7	13	
8	13	
Total	100	

TA's Name

- 1. [4 points per part] Parts (a)-(c) are unrelated.
 - (a) Write parametric equations for the line of intersection of the planes

2y + z + 4 = 0 and 5y - z + 17 = 0.

(b) Give the equation of the plane that contains the line $\mathbf{r}(t) = \langle 4t - 1, 2 - 5t, t \rangle$ and is perpendicular to the plane x - y + 8z = 10.

(c) Give the equation of the plane with x-intercept 3, y-intercept 5, and z-intercept 8.

- 2. Parts (a) and (b) are unrelated.
 - (a) [5 points] Find a vector function $\mathbf{r}(t)$ that gives the curve of intersection of the surfaces

$$(x-2)^2 + z^2 = 9$$
 and $y = 10z^2$.

(b) [7 points] The surface S consists of all points whose distance to the y-axis is three times the distance to the xz-plane. Find an equation for S and identify the surface.

Choose from the following list (circle one):

elliptic cylinder	parabolic cylinder	hyperbolic cylinder
paraboloid	ellipsoid	hyperbolic paraboloid
cone	hyperboloid of one sheet	hyperboloid of two sheets

Page 4 of 8

4. [13 points] Find and classify all critical points of

$$f(x,y) = x^4 + y^4 - 6x^2y^2 - 2x^2 + 2y^2 .$$

5. [12 points] Let T be the right triangle in the first quadrant of the xy-plane with legs along the x- and y-axes, with height 1 and base k. Here's a picture:

Let S be the solid above T and below the surface z = xy.

If the volume of S is 6, what's k?

6. [13 points] Find the volume of the solid in the first octant below the surface $z = 2 - e^{x^2 + y^2}$ and above the *xy*-plane.

- 7. [13 points] For this problem, consider the function $f(x) = (1+x)\sin(x)$.
 - (a) Write $T_2(x)$, the second Taylor polynomial for f with base b = 0.

(b) Find (and justify) an error bound for $|f(x) - T_2(x)|$ on the interval [-0.01, 0.01].

- 8. [13 points] For this problem, consider the function $f(x) = \left(\frac{x}{1-x}\right)^2 = \frac{x^2}{(1-x)^2}$.
 - (a) Write the Taylor series expansion for f(x) with base b = 0. Give your final answer in Σ -notation using one sigma sign.

(b) Find $f^{(100)}(0)$.