Your Name

Student ID \#

Professor's Name

Your Signature
\square

TA's Name

- CHECK that your exam contains 8 problems on 8 pages.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a TI-30X IIS calculator. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

Problem	Total Points	Score
1	12	
2	12	
3	12	
4	13	
5	12	

Problem	Total Points	Score
6	13	
7	13	
8	13	
Total	100	

1. [4 points per part] Parts (a)-(c) are unrelated.
(a) Write parametric equations for the line of intersection of the planes

$$
2 y+z+4=0 \text { and } 5 y-z+17=0 .
$$

(b) Give the equation of the plane that contains the line $\mathbf{r}(t)=\langle 4 t-1,2-5 t, t\rangle$ and is perpendicular to the plane $x-y+8 z=10$.
(c) Give the equation of the plane with x-intercept $3, y$-intercept 5 , and z-intercept 8 .
2. Parts (a) and (b) are unrelated.
(a) [5 points] Find a vector function $\mathbf{r}(t)$ that gives the curve of intersection of the surfaces

$$
(x-2)^{2}+z^{2}=9 \text { and } y=10 z^{2}
$$

(b) [7 points] The surface S consists of all points whose distance to the y-axis is three times the distance to the $x z$-plane. Find an equation for S and identify the surface.

Choose from the following list (circle one):

elliptic cylinder	parabolic cylinder	hyperbolic cylinder
paraboloid	ellipsoid	hyperbolic paraboloid
cone	hyperboloid of one sheet	hyperboloid of two sheets

3. [12 points] Find the equation of the tangent plane to the surface $z=\sqrt{x^{2}+y^{2}}$ at $(3,4,5)$. Write your answer in the form $A x+B y+C z=D$.
4. [13 points] Find and classify all critical points of

$$
f(x, y)=x^{4}+y^{4}-6 x^{2} y^{2}-2 x^{2}+2 y^{2} .
$$

5. [12 points] Let T be the right triangle in the first quadrant of the $x y$-plane with legs along the x - and y-axes, with height 1 and base k. Here's a picture: Let \mathcal{S} be the solid above T and below the surface $z=x y$. If the volume of \mathcal{S} is 6 , what's k ?

6. [13 points] Find the volume of the solid in the first octant below the surface $z=2-e^{x^{2}+y^{2}}$ and above the $x y$-plane.
7. [13 points] For this problem, consider the function $f(x)=(1+x) \sin (x)$.
(a) Write $T_{2}(x)$, the second Taylor polynomial for f with base $b=0$.
(b) Find (and justify) an error bound for $\left|f(x)-T_{2}(x)\right|$ on the interval [$\left.-0.01,0.01\right]$.
8. [13 points] For this problem, consider the function $f(x)=\left(\frac{x}{1-x}\right)^{2}=\frac{x^{2}}{(1-x)^{2}}$.
(a) Write the Taylor series expansion for $f(x)$ with base $b=0$.

Give your final answer in Σ-notation using one sigma sign.
(b) Find $f^{(100)}(0)$.

