Math 126, Section E, Spring 2009, Midterm I

April 21, 2008

Name
TA/Section

Instructions.

- There are 4 questions. The exam is out of 40 points.
- You are allowed to use one page of notes written only on one side of the sheet in your own handwriting.
- You may use a calculator which does not graph and which is not programmable. Even if you have a calculator, give me exact answers. ($\frac{2 \ln 3}{\pi}$ is exact, 0.7 is an approximation for the same number.)
- Show your work. If I cannot read or follow your work, I cannot grade it. You may not get full credit for a right answer if your answer is not justified by your work. If you continue at the back of a page, make a note for me. Please BOX your final answer.

Question	points
1	
2	
3	
4	
Total	

1. Find the line of intersection of the two planes $x-3 y+z=9$ and $-x+4 y=4$. Give your answer (a) As a vector function.
(b) As a parametric curve.
(c) With symmetric equations.
2. Find the angle of intersection of the two curves $\mathbf{r}_{1}(t)=<t^{3}, 2 t^{2}+1,2 t+3>$ and $\mathbf{r}_{2}(s)=<s-4, s-3, s-1>$.
3. Given the points $A(1,2,3), B(0,0,5), C(2,3,0)$ and $D(2,0,1)$:
(a) Find the equation of the plane containing the three points A, B, and C. Hint: Check you answer to see A, B and C are on your plane! (4 points)
(b) What is the area of the triangle ABC ? (1 point)
(c) Find the distance from point D to the plane in part (a) (4 points)
(d) If you draw a perpendicular line from point D to the plane, where does it intersect the plane? (1 point)
4. (a) Match the following parametric curves with their graphs.
5. $x=\sin ^{3} t, y=\cos ^{3} t$
6. $x=t^{2}-4 t-20, y=\cos t$
7. $x=\sin (3 t), y=\cos (4 t)$
8. $x=t^{3}-4 t^{2}+50, y=t^{3}-5 t+1$

(b) Find the equation of the tangent line to $\mathbf{r}(t)=<\sin (3 t), \cos (4 t)>$ at the point $\left(\frac{\sqrt{2}}{2},-1\right)$.
(c) Determine if is concave up or concave down at the point $\left(\frac{\sqrt{2}}{2},-1\right)$. Show your work. Use the appropriate graph above to verify your answer, not to find it!
