Your Name	Your Signature
Student ID #	
Your TA's name	Your Quiz Section Label and Time

Problem	Possible	Points
1	8	
2	10	
3	10	
4	12	
5	10	
Total	50	

- No books allowed. You may use a scientific calculator and one $8\frac{1}{2} \times 11$ sheet of **handwritten** notes.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning (except on the "short answer" questions).
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.

- **1** (8 points total) Recall that \overrightarrow{i} , \overrightarrow{j} , and \overrightarrow{k} are the standard basis vectors. Give a **concrete** example of each of the following:
- (a) (3 points) A **nonzero** vector \overrightarrow{v} such that $\text{proj}_{\overrightarrow{k}} \overrightarrow{v} = \overrightarrow{0}$.

(b) (5 points) A **unit** vector that is perpendicular to both $\overrightarrow{i} + \overrightarrow{j}$ and $\overrightarrow{j} - \overrightarrow{k}$. How many different solutions are there?

 $\mathbf{2}$ (10 points) Consider the curve with the vector equation

$$\overrightarrow{r}(t) = \langle t, t^2 + 1, t^3 - 2t^2 \rangle$$

Is there a point on this curve where the tangent line is parallel to the vector $\langle 10, 40, 40 \rangle$? If so, find the point. If not, explain why.

- **3** (10 points total) Consider two planes given by the equations x+2y-3z=5 and 2x-y+z=0.
- (a) (5 points) Find parametric equations of the line where the planes intersect.

(b) (5 points) Find the cosine of the angle between the planes.

4 (12 points total) Consider the curve given by the equation in polar coordinates

$$r = 2\cos(\theta) + 4\sin(\theta).$$

(a) (6 points) Find the Cartesian equation (non-parametric, in x and y coordinates) of the curve. Sketch the curve.

(b) (6 points) Find the equation of the tangent line to the curve at $\theta=\pi/4$.

- ${f 5}$ (10 points total) Consider the surface defined as the set of points which are equidistant from the x-axis and from the yz-plane.
- (a) (6 points) Write down the equation of the surface.

(b) (4 points) Identify the surface.