Your Name


Your Signature
$\square$

Student ID \#


Your TA's name


Your Quiz Section Label and Time


| Problem | Possible | Points |
| :---: | :---: | :---: |
| 1 | 8 |  |
| 2 | 10 |  |
| 3 | 10 |  |
| 4 | 12 |  |
| 5 | 10 |  |
| Total | 50 |  |

- No books allowed. You may use a scientific calculator and one $8 \frac{1}{2} \times 11$ sheet of handwritten notes.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning (except on the "short answer" questions).
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.
$\mathbf{1}$ (8 points total) Recall that $\vec{\imath}, \vec{\jmath}$, and $\vec{k}$ are the standard basis vectors. Give a concrete example of each of the following:
(a) (3 points) A nonzero vector $\vec{v}$ such that $\operatorname{proj}_{\vec{k}} \vec{v}=\overrightarrow{0}$.
(b) (5 points) A unit vector that is perpendicular to both $\vec{\imath}+\vec{\jmath}$ and $\vec{\jmath}-\vec{k}$. How many different solutions are there?

2 (10 points) Consider the curve with the vector equation

$$
\vec{r}(t)=\left\langle t, t^{2}+1, t^{3}-2 t^{2}\right\rangle
$$

Is there a point on this curve where the tangent line is parallel to the vector $\langle 10,40,40\rangle$ ? If so, find the point. If not, explain why.

3 (10 points total) Consider two planes given by the equations $x+2 y-3 z=5$ and $2 x-y+z=0$. (a) (5 points) Find parametric equations of the line where the planes intersect.
(b) (5 points) Find the cosine of the angle between the planes.

4 (12 points total) Consider the curve given by the equation in polar coordinates

$$
r=2 \cos (\theta)+4 \sin (\theta) .
$$

(a) (6 points) Find the Cartesian equation (non-parametric, in $x$ and $y$ coordinates) of the curve. Sketch the curve.
(b) (6 points) Find the equation of the tangent line to the curve at $\theta=\pi / 4$.

5 (10 points total) Consider the surface defined as the set of points which are equidistant from the $x$-axis and from the $y z$-plane.
(a) (6 points) Write down the equation of the surface.
(b) (4 points) Identify the surface.

