• Complete all questions.
• You may use a scientific, non-graphing calculator during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
• If you use a trial-and-error or guess-and-check method when an algebraic method is available, you will not receive full credit.
• You may use one hand-written 8.5 by 11 inch page of notes.
• Show all work for full credit.
• You have 50 minutes to complete the exam.
1. Find the angle between the vectors \(\langle 3, 4, -1 \rangle \) and \(\langle 5, 2, 8 \rangle \).
2. Find the plane containing the line

\[x = 3 - t, \ y = 2 - \frac{1}{2}t, \ z = 6 + 2t \]

and the point \((4, -5, 2)\).
3. Where does the plane

\[3x - y + 5z = 12 \]

intersect the line

\[x = 5t + 1, \ y = 4t + 2, \ z = 5t - 1? \]
4. Find the arc length of the curve

\[x = t^2, \quad y = \frac{2}{3} t^3 \]

for \(0 \leq t \leq 5\).
5. Let \(C \) be the polar curve
\[r = \theta^2. \]

(a) \(C \) intersects the line \(y = x \) infinitely many times. Give the Cartesian coordinates of one point of intersection which is not the origin.

(b) Find the slope of the tangent line to \(C \) at the point you gave in (a).