Autumn 2010

\# 1. (25 points) The points $A(1,2,3), B(0,1,3)$, and $C(2,-1,-1)$ determine a triangle. (a) Find the interior angle of the triangle at vertex A. (b) What is the area of the triangle? (c) What is the equation for the plane containing the points A, B, and C ? (d)What is the distance from the point $D(2,0,1)$ to the plane containing A, B, and C ?

Solution. (a) Note that $\overrightarrow{A B}=-\hat{\mathbf{i}}-\hat{\mathbf{j}}$ and $\overrightarrow{A C}=\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$. Let θ be the angle at vertex A. Then $\cos (\theta)=$ $\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}||\overrightarrow{A C}|}=\frac{2}{\sqrt{2} \sqrt{26}}=\frac{1}{\sqrt{13}}$. So $\theta=\cos ^{-1}(1 / \sqrt{13})$.
(b) Let $\mathbf{n}=\overrightarrow{A B} \times \overrightarrow{A C}=4 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$. Then Area $=\frac{1}{2}|\mathbf{n}|=2 \sqrt{3}$
(c) Since \mathbf{n} is normal to the plane and A is on the plane, setting $\mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$ and $\mathbf{r}_{0}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$, in the equation $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0$ yields the equation $4 x-4 y+4 z-8=0$ or $x-y+z-2$
(d) Distance $=\left|\overrightarrow{A D} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|=\frac{1}{\sqrt{3}}$
\# 2. (25 points) Let \mathcal{P} be the plane given by the equation $2 x+y+z=2$; and let ℓ be the line passing through the points $A(1,1,1)$ and $B(1,1,-1)$. (a) Find a parametric equation for ℓ. (Give your answer in vector form $\mathbf{r}=\mathbf{r}(t)$.) (b) Find the point Q where ℓ intersects \mathcal{P}. (c) The line ℓ intersects \mathcal{P} at an angle α. Find α.

Solution: (a) $\overrightarrow{A B}=-2 \hat{\mathbf{k}}$ So $\mathbf{r}(t)=\hat{\mathbf{i}}+\hat{\mathbf{j}}+(1-2 t) \hat{\mathbf{k}}$,
(b) Since on the line ℓ we have $x=1, y=1$ and $z=1-2 t$, we need to solve the equation $2(1)+(1)+(1-2 t)=2$ for t. This gives $t=1$. Since $\mathbf{r}(1)=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, Q=(1,1,-1)$.
(c) The angle θ that ℓ makes with the normal to \mathcal{P} satisfies the equation $\theta+\alpha=\pi / 2$. Hence $\sin (\alpha)=\cos (\theta)$. Hence, $\alpha=\sin ^{-1}\left(\frac{\overrightarrow{A B} \cdot \mathbf{n}}{|\overrightarrow{A B}||\mathbf{n}|}\right)=\sin ^{-1}(1 / \sqrt{6})$. (Note: $\alpha=\pi / 2-\cos ^{-1}(1 / \sqrt{6})$ is another way to write this.)
\# 3. (25 points) A bug moves in the (x, y) plane according to the parametric equation $\mathbf{r}=\left(t+t^{3}\right) \hat{\mathbf{i}}+\sin ^{2}(\pi t) \hat{\mathbf{j}}$, where t denotes time in seconds and position is measured in meters. The bug is located at the origin at time $t=0$ and touches the x-axis again at time $t=b$, as shown in the figure below. (a) Give the first time after time $t=0$ and before time $t=b$ when the velocity of the bug is parallel to the x-axis. (b) Express the area of the region above the x axis and below the trajectory of the bug for $0 \leq t \leq b$ as a definite integral. Simplify your expression, but do not attempt to evaluate the integral. (c) Express the distance the bug travels in the time interval $0 \leq t \leq b$ as a definite integral. Simplify your expression, but do not attempt to evaluate the integral.

Solution. (a) The velocity is vertical when the y-coordinate reaches its maximum, which is clearly when $\sin (\pi t)=$ 1 , or when $t=1 / 2 \mathrm{sec}$.
(b) The time b when the bug touches the x-axis occurs when $\sin (\pi t)=0$, so $b=1 \mathrm{sec}$. Since $x^{\prime}(t)>0$ for $t>0$, the area is given by

Area $=\int_{0}^{b} y(t) x^{\prime}(t) d t=\int_{0}^{1} \sin ^{2}(\pi t)\left(1+3 t^{2}\right) d t$.
(c) Similarly, distance traveled $=\int_{0}^{1} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=\int_{0}^{1} \sqrt{\left(1+3 t^{2}\right)^{2}+(2 \pi \sin (\pi t) \cos (\pi t))^{2}} d t$ (Note: no points were taken off for not going further than that.)
\# 4. (25 points) Consider the curve given in polar form by the formula $r=1-2 \cos (\theta)$. (a) Carefully sketch the curve in the grid below. (b) Express the curve in vector form $\mathbf{r}=f(\theta) \hat{\mathbf{i}}+g(\theta) \hat{\mathbf{j}}$. (c) Find the parametric equation for the tangent line to the curve at the point $\theta=\pi / 2$. (Do this in rectangular coordinates.)

(a)

(b) $\mathbf{r}(t)=(1-2 \cos (\theta)) \cos (\theta) \hat{\mathbf{i}}+(1-2 \cos (\theta)) \sin (\theta) \hat{\mathbf{j}}$
(c) $\mathbf{r}(\pi / 2)=\hat{\mathbf{j}}$ and $\mathbf{r}^{\prime}(\pi / 2)=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$. So $\langle f(t), g(t)\rangle=\langle-t, 1+2 t\rangle$.

