Your Name	S	Student ID #					
Your TA's name	Your Quiz Section Label and Time						

Problem	Possible	Points
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- No books allowed. You may use a scientific calculator and one $8\frac{1}{2} \times 11$ sheet of **handwritten** notes.
- Even if you have a calculator, give me exact answers.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.

 $\mathbf{1}$ (10 points) Consider the curve given by the equation in polar coordinates

$$r = 1 + \sin \theta$$
.

Find the equation of the tangent line to the curve at $\theta = \pi/6$.

- **2** (10 points total) Three points are given: P(0, -1, 1), Q(1, 2, 2), and R(3, 1, 0).
- (a) (5 points) Find the area of the triangle PQR.

(b) (5 points) Find the cosine of the angle of the triangle PQR at the vertex Q.

 $\mathbf{3}$ (10 points) Find an equation of the plane which contains the line

$$\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-3}{4}$$

and is perpendicular to the plane x + y - z = 0.

Math 126 A First Midterm October 26, 2010 5

4 (10 points) Let S be the surface defined as the set of points P(x, y, z) such that the distance from P to the plane x = 2 equals the distance from P to the line x = 1, z = 3. Find an equation for S. Simplify the equation and determine what kind of surface this is.

- **5** (10 points total)
- (a) (2 points) Identify the surface given by the equation $3x^2 = y^2 + z^2$ (sketch is not required).

(b) (8 points) Find a vector function $\overrightarrow{r}(t)$ that represents the curve of the intersection of the surfaces $3x^2 = y^2 + z^2$ and y + 2x = 1.