Your Name

Student ID \#

Your TA's name

Problem	Possible	Points
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

- No books allowed. You may use a scientific calculator and one $8 \frac{1}{2} \times 11$ sheet of handwritten notes.
- Even if you have a calculator, give me exact answers.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.
$\mathbf{1}$ (10 points) Consider the curve given by the equation in polar coordinates

$$
r=1+\sin \theta
$$

Find the equation of the tangent line to the curve at $\theta=\pi / 6$.

2 (10 points total) Three points are given: $P(0,-1,1), Q(1,2,2)$, and $R(3,1,0)$.
(a) (5 points) Find the area of the triangle $P Q R$.
(b) (5 points) Find the cosine of the angle of the triangle $P Q R$ at the vertex Q.

3 (10 points) Find an equation of the plane which contains the line

$$
\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-3}{4}
$$

and is perpendicular to the plane $x+y-z=0$.

4 (10 points) Let S be the surface defined as the set of points $P(x, y, z)$ such that the distance from P to the plane $x=2$ equals the distance from P to the line $x=1, z=3$. Find an equation for S. Simplify the equation and determine what kind of surface this is.

5 (10 points total)
(a) (2 points) Identify the surface given by the equation $3 x^{2}=y^{2}+z^{2}$ (sketch is not required).
(b) (8 points) Find a vector function $\vec{r}(t)$ that represents the curve of the intersection of the surfaces $3 x^{2}=y^{2}+z^{2}$ and $y+2 x=1$.

