Math 126, Section C, Autumn 2012, Solutions to Midterm I

1. Answer the following question regarding the picture below

We know $\overrightarrow{A C}=\langle 2,6,2\rangle, \overrightarrow{B D}=\langle 4,0,-2\rangle$ and $A=(0,2,-1)$.
(a) (4 points) Compute the two vectors $\mathbf{u}=\overrightarrow{A B}=\overrightarrow{D C}$ and $\mathbf{v}=\overrightarrow{A D}=\overrightarrow{B C}$. From $\mathbf{v}+\mathbf{u}=\overrightarrow{A C}=<$ $2,6,2>$ and $\mathbf{v}-\mathbf{u}=\overrightarrow{B D}=<4,0,-2>$ we have $2 \mathbf{v}=<6,6,0>$ and $\mathbf{v}=<3,3,0>$ and $\mathbf{u}=<$ $2,6,2>-<3.3 .0>=<-1,3,2>$.
(b) (3 points) Find the coordinates of the points B and C. From $<2,6,2>=\overrightarrow{A C}$ we get $C=(2,8,1)$. From $<-1,3,2>=\overrightarrow{A B}$ we get $B=(-1,5,1)$.
(c) (3 points) The line containing B and E is perpendicular to the line containing A to D as shown in the picture. Find the coordinates of the point E.

$$
\begin{gathered}
\overrightarrow{A E}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \\
=\frac{<-1,3,2>\cdot<3,3,3>}{<3,3,0>\cdot<3,3,0>}<3,3,0>=<1,1,0>
\end{gathered}
$$

so $E=(1,3,-1)$.
2. Given two planes

$$
P 1: \quad 2 x-y+z=5
$$

and

$$
P 2: \quad 3 x+2 y-z=3
$$

(a) (6 points) Find parametric equations for the line of intersection of the two planes. Check that your line is indeed on both planes.

The direction vector for the line is $\mathbf{n}_{\mathbf{1}} \times \mathbf{2}_{\mathbf{2}}=<2,-1,1>\times<3,2,1>=<-1,5,7>$.
To compute a point on both planes we can take $x=0$ and solve $0-y+z=5$ and $0+2 y-z=3$ to get $y=8$ and $z=13$ so the point is $(0,8,13)$.

Therefore the line equations are

$$
x=0-t, y=8+5 t, z=13+7 t
$$

(b) (3 points) Find the equation of a third plane $P 3$ which contains that line and the point $P(0,7,2)$. The normal for the plane is $\mathbf{n}=\mathbf{v} \times \overrightarrow{P Q}$ where $Q=(0,8,13)$. So the normal vector is $\langle-1,5,7\rangle$ $\times<0,1,11>=<48,11,-1>$. Therefore, the plane equation is

$$
48 x+17 y-z=75
$$

(c) (1 point) Find the line of intersection of the planes $P 1$ and $P 3$.

The same as the line in part (a)
3. Answer the following.
(a) (6 points) Match the following vector functions with the curves they trace in space. The positive z-axis points up in the graphs. Write the letter of the graph next to the corresponding vector function.

$$
\begin{array}{lll}
\mathbf{r}_{\mathbf{1}}(t)=\langle t+3,2 t-1,-t+4\rangle F & \mathbf{r}_{\mathbf{2}}(t)=\langle 2 t+3,2 t-1, t+4\rangle E & \mathbf{r}_{\mathbf{3}}(t)=\left\langle t \cos (t), t, \frac{t \sin (t)}{2}\right\rangle D \\
\mathbf{r}_{\mathbf{4}}(t)=\langle t, \sin (t), 0\rangle B & \mathbf{r}_{\mathbf{5}}(t)=\left\langle t+1,2 t^{2}-5 t+1, t^{3}\right\rangle E & \mathbf{r}_{\mathbf{6}}(t)=\left\langle\cos (t), 10 t, \frac{\sin (t)}{2}\right\rangle F
\end{array}
$$

(b) (4 points) Find the vector equation of the tangent line to $\mathbf{r}(t)=\left\langle t+1,2 t^{2}-5 t+1, t^{3}\right\rangle$ at the point where $t=2$.
Plugging in $t=2$, the point is $(2+1,8-10+1,8)=(3,-1,8)$. The drection vector is $\mathbf{r}^{\prime}(2)$. We compute $\mathbf{r}^{\prime}(t)=<1,4 t-5,3 t^{2}>$ so $\mathbf{r}^{\prime}(2)=<1,3,12>$. Therefore the line equation is $\mathbf{r}(t)=<3+t,-1+3 t, 8+12 t>$.
4. Given the equation

$$
x^{2}-4 y^{2}+4 z^{2}+8 y=4
$$

(a) (5 points) Identify the surface and sketch it. Label your axes so I can see the orientation. Label any points you think are important, for example, if you have a sphere, label its center.
Completing the square and rearranging terms we get

$$
\frac{x^{2}}{4}+z^{2}=(y-1)^{2}
$$

which is a double cone with the y axis running through it. The two cones meet at the point $(0,1,0)$.
(b) (4 points) Find the point(s) of intersection of the above surface and the line given by

$$
x=8 t \quad y=5 t+1 \quad z=3-t
$$

We solve

$$
(8 t)^{2}-4(5 t+1-1)^{2}+4(3-t)^{2}=0
$$

simplifying we get

$$
-t^{2}-6 t+9=0
$$

so $t=-3 / 2$ or $t=-3 / 4$, giving us the points $(-12,-13 / 2,9 / 2)$ and $(-6,-11 / 4,15 / 4)$.
(c) (1 point) Write one vector function which gives a curve on this cone. There are many answers to this question.
Here any three frunctions $f(t), g(t), h(t)$ with

$$
\frac{f(t)^{2}}{4}+h(t)^{2}=(g(t)-1)^{2}
$$

would give a curve on the cone. For example $\mathbf{r}(t)=<2 t, t+1,0>$ or $\mathbf{r}(t)=<2 t \cos t, t+1, t \sin t>$.

