1 (8 points) Find the angle between a diagonal of a cube and one of its edges. Give your answer rounded to the nearest degree.

We may assume the length of a side of the cube is 1 .

Then the diagonal is given by the vector $\mathbf{v}=\langle\mathbf{1}, \mathbf{1}, \mathbf{1}\rangle$.
The 3 sides are given by the vectors $\mathbf{i}=\langle 1,0,0\rangle, \mathbf{j}=\langle 0,1,0\rangle$ and $\mathbf{k}=\langle 0,0,1\rangle$. Each gives the same angle.

$$
\begin{aligned}
& \cos \theta=\frac{\mathbf{v} \cdot \mathbf{i}}{|\mathbf{v}| \cdot|\mathbf{i}|}=\frac{1}{\sqrt{3}} \\
& \theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \approx 55^{\circ}
\end{aligned}
$$

2 (10 points) Let $\mathbf{r}(t)=3 t^{3} \mathbf{i}+5 t^{2} \mathbf{j}$. Compute all the points on the curve where the tangent line passes through the point $(12,0)$.

The curve has parametric equations $x=3 t^{3}, y=5 t^{2}$.
The tangent line is given by an equation of the form $y-b=m(x-a)$ where (a, b) is a point on the curve.
Thus $a=3 t^{3}$ and $b=5 t^{2}$.
$m=\frac{d y / d t}{d x / d t}=\frac{10 t}{9 t^{2}}=\frac{10}{9 t}$
The tangent line passes through the point $(12,0)$ means $x=12$ and $y=0$.
Putting it all together gives

$$
\begin{aligned}
0-5 t^{2} & =\frac{10}{9 t}\left(12-3 t^{3}\right) \\
-45 t^{3} & =120-30 t^{3} \\
t^{3} & =-8 \\
t & =-2
\end{aligned}
$$

There is only one point and it has coordinates $(-24,20)$.

3 (10 points) Compute symmetric equations for the line of intersection of the planes $2 x+y-z=2$ and $x-y-2 z=1$. Where does this line intersect the plane $x-z=1 ?$

We need a point on the line and the direction vector.

To get the point, add the 2 equations together to get $3 x-3 z=3$.
Take $z=0$ to get $x=1$. Plug these values into $2 x+y-z=2$ to get $y=0$.
Thus the point $(1,0,0)$ is on both planes.

The direction vector is the cross product of the 2 plane normals.
$\langle 2,1,-1\rangle \times\langle 1,-1,-2\rangle=\langle-3,3,-3\rangle$
We can use $\langle 1,-1,1\rangle$
The parametric equations are $x=t+1, y=-t$ and $z=t$
The symmetric equations are $x-1=-y=z$

To intersect the line with the plane $x-z=1$, substitute the parametric equations into the plane equation.

$$
\begin{aligned}
x-z & =1 \\
(t+1)-t & =1 \\
1 & =1
\end{aligned}
$$

This equation is true for all values of t. Thus the line lies in the plane $x-z=1$.

4 (12 points) Let $\mathbf{r}(t)=\left\langle\cos (\pi t), t \sin (\pi t), t^{3}\right\rangle$.
(a) Give parametric equations for the tangent line to this curve at the point $(1,0,-8)$.

We have the point, so we only need the direction vector. Note that $\mathbf{r}(-2)=\langle 1,0,-8\rangle$

$$
\begin{aligned}
& \mathbf{r}^{\prime}(t)=\left\langle-\pi \sin (\pi t), \sin (\pi t)+\pi t \cos (\pi t), 3 t^{2}\right\rangle \\
& \mathbf{r}^{\prime}(-2)=\langle 0,-2 \pi, 12\rangle
\end{aligned}
$$

The parametric equations are $x=1, y=-2 \pi t$ and $z=12 t-8$
(b) Compute the curvature at the given point.

We use the equation $\kappa=\frac{\left|\mathbf{r}^{\prime}(-2) \times \mathbf{r}^{\prime \prime}(-2)\right|}{\left|\mathbf{r}^{\prime}(-2)\right|^{3}}$
We have $\mathbf{r}^{\prime}(-2)=2\langle 0,-\pi, 6\rangle$ from part (a).
$\mathbf{r}^{\prime \prime}(t)=\left\langle-\pi^{2} \cos (\pi t), \pi \cos (\pi t)+\pi \cos (\pi t)-\pi^{2} t \sin (\pi t), 6 t\right\rangle$
$\mathbf{r}^{\prime \prime}(-2)=\left\langle-\pi^{2}, 2 \pi,-12\right\rangle$
$\mathbf{r}^{\prime}(-2) \times \mathbf{r}^{\prime \prime}(-2)=-2 \pi^{2}\langle 0,6, \pi\rangle$
$\left|\mathbf{r}^{\prime}(-2) \times \mathbf{r}^{\prime \prime}(-2)\right|=2 \pi^{2} \sqrt{36+\pi^{2}}$
$\kappa=\frac{2 \pi^{2} \sqrt{36+\pi^{2}}}{\left(2 \sqrt{36+\pi^{2}}\right)^{3}}=\frac{\pi^{2}}{4\left(36+\pi^{2}\right)} \approx 0.054$

5 (10 points) Consider the polar curve $r=e^{2 \theta}$ where $0 \leq \theta \leq 2 \pi$. Find all points on the curve where the tangent line has slope 3 . Give your answer in $x y$ coordinates.

First give x and y as paramteric functions of θ.

$$
\begin{aligned}
& x=e^{2 \theta} \cos \theta \\
& y=e^{2 \theta} \sin \theta
\end{aligned}
$$

Compute $d y / d x$ and set it equal to 3 .

$$
\begin{aligned}
d x / d \theta & =2 e^{2 \theta} \cos \theta-e^{2 \theta} \sin \theta \\
d y / d \theta & =2 e^{2 \theta} \sin \theta+e^{2 \theta} \cos \theta \\
d y / d x & =\frac{2 \sin \theta+\cos \theta}{2 \cos \theta-\sin \theta}=3
\end{aligned}
$$

Solve for θ.

$$
\begin{aligned}
2 \sin \theta+\cos \theta & =6 \cos \theta-3 \sin \theta \\
5 \sin \theta & =5 \cos \theta \\
\tan \theta & =1 \\
\theta & =\pi / 4,5 \pi / 4
\end{aligned}
$$

Use the parametric equations to calculate the points.
$\left(\frac{e^{\pi / 2}}{\sqrt{2}}, \frac{e^{\pi / 2}}{\sqrt{2}}\right)$ and $\left(-\frac{e^{5 \pi / 2}}{\sqrt{2}},-\frac{e^{5 \pi / 2}}{\sqrt{2}}\right)$
Or approximately
$(3.4,3.4)$ and $(-1821.5,-1821.5)$

