Math 126 G - Autumn 2017
 Midterm Exam Number One October 24, 2017

Name: Anne Surkey Student ID no. : 8675309
 \qquad

1	12	12
2	10	10
3	10	10
4	13	13
5	15	15
Total	60	60

- This exam consists of FIVE problems on FIVE pages, including this cover sheet.
- Show all work for full credit. Show no work for zero credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- Write all of your work on the exam itself. If you use the back of the page, please indicate that you have done so!
- You may use a TI-30X IIS on this exam. No other electronic devices are allowed.
- Draw a box around your final answer to each problem.
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 50 minutes to complete the exam.

1. [4 points per part] $A B C D$ is a parallelogram, with diagonals $A C$ and $B D$.

Here are some coordinates:

$$
A=(2,0,5) \quad B=(1,4,8) \quad C=(2,7,10)
$$

(a) What are the coordinates of D ?

(b) Find the area of the parallelogram $A B C D$.

$$
\begin{aligned}
\text { area }=|\langle 1,3,2\rangle \times\langle-1,4,3\rangle| & =|\langle 1,-5,7\rangle| \\
& =\sqrt{1^{2}+5^{2}+7^{2}}=\sqrt{75}=5 \sqrt{3}
\end{aligned}
$$

(c) Find the equation of the plane containing this parallogram.

Using cross product as normal vector: $\frac{x-5 y+7 z=37}{\uparrow}$
2. [10 points] Write an equation for the ellipsoid centered at $(2,4,-1)$ and containing the points $(-6,1,-1),(2,-1,-1)$, and $(4,3,2)$.

$$
\begin{aligned}
& \underbrace{(-6,1,-1),(2,-1,-1), ~ a n d ~(4,3,2)} \text {. } \frac{(x-2)^{2}}{a^{2}}+\frac{(y-4)^{2}}{b^{2}}+\frac{(z+1)^{2}}{c^{2}}=1 \\
& +\frac{25}{b^{2}}+0=1 \rightarrow b=5 \\
& \begin{array}{l}
\frac{64}{a^{2}}+\frac{9}{25}+0=1 \rightarrow a=10 \\
\frac{4}{100}+\frac{1}{25}+\frac{9}{c^{2}}=1 \rightarrow c^{2}=\frac{225}{23}
\end{array} \\
& \frac{(x-2)^{2}}{100}+\frac{(y-4)^{2}}{25}+\frac{23(z+1)^{2}}{225}=1
\end{aligned}
$$

3. [10 points] I have some secret vectors u and v.

4. Consider the polar curve $r=1-6 \cos (\theta)$.
(a) [4 points] Find all intersections of the curve with the x-axis.

$$
\begin{aligned}
& \theta=0 \rightarrow r=1-6=-5 \rightarrow(-5,0) \\
& \theta=\pi \rightarrow r=1+6=7 \rightarrow(-7,0) \\
& r=0 \rightarrow \theta=\cos ^{-1}\left(\frac{1}{6}\right) \rightarrow(0,0)
\end{aligned}
$$

(b) [9 points] Find the x-coordinates of all points on the curve at which the tangent line is horizontal.

$$
\begin{aligned}
& \frac{d r}{d \theta}=6 \sin \theta \\
& \begin{aligned}
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}=\square \longrightarrow & 6 \sin ^{2} \theta+(1-6 \cos \theta) \cos \theta=0 \\
& 6-6 \cos ^{2} \theta+\cos \theta-6 \cos ^{2} \theta=0
\end{aligned} \\
& -12 \cos ^{2} \theta+\cos \theta+6=0 \\
& \text { or use } \\
& \begin{array}{c}
\text { gadratic } \\
\text { farm }
\end{array} \\
& r=1-6\left(\frac{3}{4}\right) \\
& r=1-6\left(\frac{-2}{3}\right) \\
& r=\frac{-7}{2} \\
& \downarrow \\
& x=r \cos \theta \\
& x=\frac{-21}{8} \\
& r=5 \\
& \downarrow \\
& x=r \cos \theta \\
& x=\frac{-10}{3}
\end{aligned}
$$

5. [5 points per part]

(a) Write a vector function $\mathbf{r}(t)$ whose space curve is the intersection of the surfaces

$$
\begin{gathered}
x+y-z=1 \quad \text { and } \\
\text { set } z=t \\
x=t^{2} \\
y=1-x+z=-t^{2}+t+1 \\
\stackrel{\rightharpoonup}{r}(t)=\left\langle t^{2},-t^{2}+t+1, t\right\rangle
\end{gathered}
$$

(b) Let P_{1} and P_{2} be the intersections of this space curve with the plane $y=-11$.

Find parametric equations for the lines tangent to the curve at P_{1} and P_{2}.

$$
\begin{aligned}
& \begin{array}{c}
-t^{2}+t+1=-11 \\
\downarrow
\end{array} \\
& \vec{r}^{\prime}(t)=\langle 2 t,-2 t+1,1\rangle \\
& t^{2}-t-12=0 \\
& (t-4)(t+3)=0 \\
& t=4 \text { or } t=-3 \text {. } \\
& t=4 \text { or } t=-3 \\
& \rightarrow \text { point: }(16,-11,4) \rightarrow \begin{array}{l}
x=16+8 t \\
\text { direction: }\langle 8,-7,1\rangle \\
y=-11-7 t \\
z=4+t
\end{array}
\end{aligned}
$$

(c) Are the lines you found in part (b) parallel, intersecting, or skew?

