Version 1: In $\# 1, A$ is the point $(0,-1,4)$.

1. (a) $\cos ^{-1}\left(\frac{23}{\sqrt{29} \sqrt{41}}\right)$
(b) $\sqrt{165}$
(c) $\frac{35}{\sqrt{165}}$
2. (a) C
(b) $\frac{-2}{\pi+1}$
3. (a) Since $\frac{d x}{d t}=1+3 t^{2}$ is always positive, the x-coordinate is always increasing. Thus, the object moves from left to right.
(b) $t=\frac{1}{2}$
(c) $\frac{\pi^{2}}{8}$
4. (a) There are many correct answers.

Here's one:
$\mathbf{a}=\langle 10,-3,4\rangle$ and $\mathbf{i}=\langle 1,0,0\rangle$.
The vector $\mathbf{a} \times \mathbf{i}=\langle 0,4,3\rangle$ is orthogonal to \mathbf{a} and $|\mathbf{a} \times \mathbf{i}|=5$.
Let $\mathbf{v}=\frac{101}{5}(\mathbf{a} \times \mathbf{i})=\frac{101}{5}\langle 0,4,3\rangle$.
Then \mathbf{v} is orthogonal to \mathbf{a} and has length 101.
(b) There are many correct answers.

Here's one:
Choose y and z so that $2 y^{2}=\sin ^{2} t$ and $z^{2}=\cos ^{2} t$ so that $2 y^{2}+z^{2}=1$ for all t.
That is, let $y=\frac{\sin t}{\sqrt{2}}$ and $z=\cos t$.
Then let $x=y^{2}+z^{2}=\frac{\sin ^{2} t}{2}+\cos ^{2} t$.
The curve of intersection is then

$$
x=\frac{\sin ^{2} t}{2}+\cos ^{2} t, y=\frac{\sin t}{\sqrt{2}}, z=\cos t
$$

Version 2: In $\# 1, A$ is the point $(1,0,-3)$.

1. (a) $\cos ^{-1}\left(\frac{16}{\sqrt{41} \sqrt{26}}\right)$
(b) $\frac{9 \sqrt{10}}{2}$
(c) $\frac{7}{\sqrt{10}}$
2. (a) D
(b) $\frac{2 \pi+1}{2}$
3. (a) Since $\frac{d x}{d t}=1+3 t^{2}$ is always positive, the x-coordinate is always increasing. Thus, the object moves from left to right.
(b) $t=\frac{1}{2}$
(c) $\frac{\pi^{2}}{8}$
4. (a) There are many correct answers.

Here's one:
$\mathbf{a}=\langle 2,-10,3\rangle$ and $\mathbf{i}=\langle 1,0,0\rangle$.
The vector $\mathbf{a} \times \mathbf{i}=\langle 0,3,10\rangle$ is orthogonal to \mathbf{a} and $|\mathbf{a} \times \mathbf{i}|=\sqrt{109}$.
Let $\mathbf{v}=\frac{105}{\sqrt{109}}(\mathbf{a} \times \mathbf{i})=\frac{105}{\sqrt{109}}\langle 0,3,10\rangle$.
Then \mathbf{v} is orthogonal to \mathbf{a} and has length 105 .
(b) There are many correct answers.

Here's one:
Choose y and z so that $y^{2}=\sin ^{2} t$ and $5 z^{2}=\cos ^{2} t$ so that $y^{2}+5 z^{2}=1$ for all t.
That is, let $y=\sin t$ and $z=\frac{\cos t}{\sqrt{5}}$.
Then let $x=y^{2}+z^{2}=\sin ^{2} t+\frac{\cos ^{2} t}{5}$.
The curve of intersection is then

$$
x=\sin ^{2} t+\frac{\cos ^{2} t}{5}, y=\sin t, z=\frac{\cos t}{\sqrt{5}} .
$$

