1. [5 points per part] For this problem, consider the following planes:

$$
P_{1}: \quad 5 x+y+4 z=1 \quad \text { and } \quad P_{2}: \quad 10 x+2 y=3
$$

(a) Find the point on P_{1} closest to $(11,3,12)$.

Line through $(11,3,12)$ normal to P_{1} :

Intersection with P_{1} :

$$
\begin{aligned}
& 5(11+5 t)+3+t+4(12+4 t)=1 \\
& 55+25 t+3+t+48+16 t=1
\end{aligned}
$$

(b) Find the acute angle of intersection between P_{1} and P_{2}.

$$
\begin{aligned}
& \text { Angle boon } \underbrace{\langle 5,1,4\rangle}_{\vec{a}} \text { and } \underbrace{\langle 10,2,0\rangle}_{\underbrace{4}_{5}} \text { : } \\
& \vec{a} \cdot f=52 \\
& |\vec{a}|=\sqrt{42} \\
& |\vec{b}|=\sqrt{104} \quad 52=\sqrt{42} \sqrt{104} \cos \theta \\
& \quad \theta=\cos ^{-1}\left(\frac{52}{\sqrt{42} \sqrt{104}}\right)=\cos ^{-1}\left(\frac{13}{\sqrt{273}}\right)
\end{aligned}
$$

(c) Find parametric equations for the line of intersection of P_{1} and P_{2}.

Say $x=t$

$$
\begin{aligned}
& y=\frac{3-10 t}{2}=\frac{3}{2}-5 t \\
& 5 t+\frac{3}{2}-5 t+4 z=1 \rightarrow 4 z=\frac{-1}{2} \rightarrow z=\frac{-1}{8} \\
& x=t \\
& y=\frac{3}{2}-5 t \\
& z=\frac{-1}{8}
\end{aligned}
$$

2. [1 point per part] Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in 3 -space. Indicate whether each of the following expressions is a vector, a scalar, or nonsense.

You do not need to show work on this problem.
(a) $|\mathbf{u}|+\mathbf{v} \cdot \mathbf{w}$
(b) $\quad|\mathbf{u}| \mathbf{v}-|\mathbf{w}|$
(c) $\mathbf{u} \cdot(\mathbf{v} \cdot \mathbf{w})$
(d) $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$
(e) $\operatorname{proj}_{\mathbf{u}}(\mathbf{v} \times \mathbf{w})$
(f) $\quad \operatorname{comp}_{\mathbf{u}}(\mathbf{v}+\mathbf{w})$

Nonsense

Vector Scalar

Vector Scalar Nonsense

Vector

3. [3 points per part]

You do not need to show work on this problem.
(a) Give an example of two vectors \mathbf{a} and \mathbf{b} such that $\mathbf{a} \times \mathbf{b}=\langle 0,6,0\rangle$.
$\langle 2,0,0\rangle \times\langle 0,0,-3\rangle$, for example
(b) Give an example of two different vectors \mathbf{a} and \mathbf{b} such that $\operatorname{proj}_{\langle 1,0,0\rangle} \mathbf{a}=\operatorname{proj}_{\langle 1,0,0\rangle} \mathbf{b}$.

(c) Give an example of a vector a such that $\operatorname{proj}_{\mathbf{a}}\langle 4,5,6\rangle=2 \mathbf{a}$.

4. Suppose the surface $a x^{2}+y^{2}+2 z^{2}=b$ contains the points $(2,0,1)$ and $(3,5,1)$.
(a) [6 points] What are a and b ?

$$
9 a+25+2=b
$$

$$
-20+2=6
$$

$$
4 a+2=9 a+27
$$

$$
b=-18
$$

(b) [2 points] Give the name of this surface.

$$
\begin{aligned}
& -5 x^{2}+y^{2}+2 z^{2}=-18 \\
& \frac{5 x^{2}}{18}-\frac{y^{2}}{18}-\frac{z^{2}}{9}=1 \longrightarrow \text { hyperboloid of two sheets }
\end{aligned}
$$

5. [7 points] Draw a graph of the polar curve $r=\frac{3}{\sin \theta+2 \cos \theta}$. Label your graph clearly.

$$
\begin{aligned}
& r \sin \theta+2 r \cos \theta=3 \\
& y+2 x=3 \\
& y=-2 x+3
\end{aligned}
$$

It's a line!

6. [5 points per part] Consider the space curve of the following vector function:

$$
\mathbf{r}(t)=\langle\sin (t), \underbrace{4 t+3}, \underbrace{\left.t^{2}+8 t\right\rangle}
$$

(a) Find all points where the space curve intersects the plane $z=y+9$.

$$
\begin{aligned}
& t^{2}+8 t=4 t+3+9 \\
& t^{2}+4 t-12=0 \\
& (t+6)(t-2)=0 \\
& t=-6 \text { or } t=2
\end{aligned}, \begin{aligned}
& (\sin (-6),-21,-12) \\
& \text { and } \\
& (\sin (2), 11,20)
\end{aligned}
$$

(b) Write parametric equations for the line tangent to the space curve at the point $(0,3,0)$.

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\langle\cos (t), 4,2 t+8\rangle \\
& \vec{r}^{\prime}(0)=\langle 1,4,8\rangle \\
& \begin{array}{l}
x=t \\
y=3+4 t \\
z=8 t
\end{array} \quad \text { direction }
\end{aligned}
$$

(c) Find the curvature of the space curve at the point $(0,3,0)$.

$$
\begin{aligned}
& \vec{r}^{\prime \prime}(t)=\langle-\sin (t), 0,2\rangle \\
& \vec{r}^{\prime \prime}(0)=\langle 0,0,2\rangle \\
& \vec{r}^{\prime}(0) \times \vec{r}^{\prime \prime}(0)=\langle 1,4,8\rangle \times\langle 0,0,2\rangle=\langle 8,-2,0\rangle \\
& \left|\vec{r}^{\prime}(0)\right|=9 \\
& \left|\vec{r}^{\prime}(0) \times r^{\prime \prime}(0)\right|=\sqrt{68}=2 \sqrt{17} \\
& \quad K=\frac{2 \sqrt{17}}{9^{3}}
\end{aligned}
$$

