Math 126 C - Spring 2009
 Mid-Term Exam Number One
 April 21, 2009
 Solutions

1. (a) Find the equation of the plane P containing the point $(1,2,3)$ which is parallel to the plane containing the points ($0,3,4$), ($3,2,1$), and ($5,4,2$).
We first find two vectors extending between two pairs of points given.
Two such vectors are $\langle 3,-1,-3\rangle$ and $\langle 5,1,-2\rangle$.
Taking their cross product we have the vector $\langle 5,-9,8\rangle$.
This is the normal vector to the plane which is parallel to the plane P, and hence is the normal vector for the plane P.
Since P contains the point $(1,2,3)$, an equation for P is

$$
5(x-1)-9(y-2)+8(z-3)=0
$$

which can be, optionally, simplified to

$$
5 x-9 y+8 x=11 .
$$

(b) Give an example of a line contained in plane P.

There are very many reasonable approaches to this problem. One is to take the vector $\langle 3,-1,3\rangle$, known to be parallel to P, as the direction vector for the line. Then, taking the point $(1,2,3)$, known to be in P, we have the line

$$
x=1+3 t, y=2-t, z=3+3 t
$$

2. Thoroughly describe the surface defined as the set of points which are twice as far from the z-axis as they are from the $x y$-plane.
The distance from the point (x, y, z) to the $x y$-plane is $|z|$.
The distance from the point (x, y, z) to the z-axis is $\sqrt{x^{2}+y^{2}}$.
Thus, the surface defined is the set of points satisfying the equation

$$
\sqrt{x^{2}+y^{2}}=2|z| .
$$

Squaring this equation yields

$$
x^{2}+y^{2}=4 z^{2}
$$

or

$$
\frac{x^{2}}{4}+\frac{y^{2}}{4}-z^{2}=0 .
$$

This we recognize as the equation of a cone. This is a cone with apex at the origin and axis the z-axis. Traces parallel to the $x y$-plane are circles, while traces parallel to the $x z$-plane or the $y z$-plane are hyperbolas, except for those passing through the origin (such traces are pairs of lines through the origin).
3. The curve defined by the polar equation $r=\sin ^{2} \theta$ is shown in the figure below.

(a) Find the slope of the tangent line to the curve at the point where $\theta=\frac{\pi}{4}$.

We have $x=r \cos \theta=\cos \theta \sin ^{2} \theta$ and $y=r \sin \theta=\sin ^{3} \theta$. From this we are able to conclude, after simplification, that

$$
\frac{d y}{d x}=\frac{3 \sin \theta \cos \theta}{2 \cos ^{2} \theta-\sin ^{2} \theta}
$$

Taking $\theta=\frac{\pi}{4}$, we find

$$
\frac{d y}{d x}=3
$$

(b) What is the maximum x-coordinate for a point on this curve? We see, assisted by the figure, that where the maximal x-coordinate occurs,

$$
\frac{d x}{d \theta}=0
$$

Thus we need to solve

$$
\sin \theta\left(2 \cos ^{2} \theta-\sin ^{2} \theta\right)=0
$$

Since $\sin \theta=0$ results in $r=0$ and $x=0$, we need only concern ourselves with the other factor. Since

$$
2 \cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)=3 \cos ^{2} \theta-1
$$

we may conclude that

$$
\cos \theta=\frac{ \pm 1}{\sqrt{3}}
$$

Since $x=\cos \theta\left(1-\cos ^{2} \theta\right)$, we conclude that the maximum x-coordinate is

$$
\frac{1}{\sqrt{3}}\left(1-\frac{1}{3}\right)=\frac{2}{3 \sqrt{3}} \approx 0.384900179 \ldots
$$

4. Where does the line which passes through the points $(0,5,-3)$ and $(1,2,8)$ intersect the plane $x-3 y+4 z=11$?
We may begin by finding parametric equations for the line. This will do:

$$
x=t, y=5-3 t, z=-3+11 t
$$

Then, we seek a solution to

$$
t-3(5-3 t)+4(-3+11 t)=11
$$

The solution is $t=\frac{19}{27}$. Hence the point is $\left(\frac{19}{27}, \frac{26}{9}, \frac{128}{27}\right)$.
5. Consider the curve with the vector equation

$$
\vec{r}(t)=\left\langle t^{2}, 2 t^{2}-t, 3 t-t^{2}\right\rangle
$$

Is there a point on this curve where the tangent line is parallel to the vector $\langle 20,38,-14\rangle$? If so, find the point. If not, explain why.
The tangent vector is

$$
\vec{r}(t)=\langle 2 t, 4 t-1,3-2 t\rangle .
$$

If this vector is parallel to $\langle 20,38,-14\rangle$ for some t, then there exists a scalar k such that

$$
2 t=20 k \text { and } 4 t-1=38 k
$$

Solving this pair of equations simultaneously yields $k=1 / 2$ and $t=5$.
Checking the z-components, we find that $3-2(5)=-7=\frac{1}{2}(-14)$, so the direction vector at $t=5$ is, indeed, $1 / 2$ times the vector $\langle 20,38,-14\rangle$, and so the direction vector is parallel to $\langle 20,38,-14\rangle$.
The sought point on the line is thus $\langle 25,45,-10\rangle$.

