Math 126 C - Spring 2010
 Mid-Term Exam Number One
 April 20, 2010
 Answers

1. Determine whether or not the line

$$
x=4 t-7, y=5 t-16, z=-2 t+14
$$

and the line

$$
x=t+7, y=-3 t-7, z=7 t+22
$$

intersect. If they do, give the point of intersection.
The lines intersect at the point $(5,-1,8)$, corresponding to $t=3$ for the first line and $t=-2$ for the second line.
2. Let P be the plane containing the points $(1,5,2),(2,3,6)$ and $(7,4,1)$. Find the intersection of P with the y-axis.
The plane P is given by

$$
6 x+25 y+11 z=153
$$

The y-axis consists of all points satisfying

$$
x=0, z=0
$$

so the intersection with the y-axis is the point $x=0, z=0$ and

$$
25 y=153
$$

i.e., the point $\left(0, \frac{153}{25}, 0\right)$.
3. Consider the polar curve

$$
r=\sin \theta \tan \theta
$$

(a) Find an equivalent cartesian equation for this curve.
(b) The curve has a vertical asymptote. What is the equation of the asymptote?
(a) An equivalent cartesian equation is

$$
x\left(x^{2}+y^{2}\right)=y^{2} .
$$

(b) Rearranging, we have

$$
y^{2}=\frac{-x^{3}}{x-1}
$$

We see that the right-hand side is unbounded as x approaches 1 ; hence the curve has a vertical asymptote at $x=1$.
4. Let S be the surface in $3 D$ consisting of all points which are twice as far from the z-axis as they are from the x-axis.
(a) Give an example of a point on this surface, other than the origin.
(b) Give an equation for this surface.
(c) Describe this surface (if it is a quadric surface, categorizing it (i.e., ellipsoid, eliptic paraboloid, etc.) is sufficient).
(a) The point $(2,0,1)$ is such a point. (b) From

$$
\sqrt{x^{2}+y^{2}}=2 \sqrt{y^{2}+z^{2}}
$$

we can arrive at

$$
x^{2}-3 y^{2}-4 z^{2}=0
$$

(c) The surface is a quadric surface. Setting $y=0$ or $z=0$, we see the traces are pairs of degenerate hyperbolas. With x set to a constant, we see traces which are ellipses. We may conclude that the surface is a cone.
5. Let P be the point in the first quadrant on the curve

$$
x=\cos t, y=\csc t
$$

such that the tangent line to the curve at P passes through the origin. Find the coordinates of P.

By setting $\frac{d y}{d x}=\frac{y}{x}$ we find

$$
\frac{\cos t}{\sin ^{3} t}=\frac{1}{\cos t \sin t}
$$

which gives us

$$
\cos ^{2} t=\sin ^{2} t
$$

This yields the solution

$$
t=\frac{\pi}{4}
$$

and so

$$
P=\left(\frac{\sqrt{2}}{2}, \frac{2}{\sqrt{2}}\right)
$$

