1. (a) ANSWER: $(-2,14,6)$
(b) ANSWER: $y-2 z=2$
2. HINT: $x=r \cos \theta=(6+\cos (6 \theta)) \cos \theta, y=r \sin \theta=(6+\cos (6 \theta)) \sin \theta$, and $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$.

ANSWER: $y=-\sqrt{3} x+10$
3. (a) HINT: $\overrightarrow{P Q}=\langle k-3,-3,0\rangle, \overrightarrow{P S}=\langle-5,-4,2\rangle$, and $|\overrightarrow{P Q} \times \overrightarrow{P S}|=\sqrt{581}$.

ANSWER: $k=5$
(b) HINT: Let R be the point with coordinates (x, y, z). Then $\overrightarrow{Q R}=\langle x-5, y-1, z-1\rangle$ and $\overrightarrow{Q R}=\overrightarrow{P S}$.
ANSWER: $(0,-3,3)$
4. (a) ANSWER: $\vec{T}(t)=\left\langle-\frac{3}{5} \sin 3 t, \frac{4}{5}, \frac{3}{5} \cos 3 t\right\rangle$ and $\vec{N}(t)=\langle-\cos 3 t, 0,-\sin 3 t\rangle$
(b) HINT: The direction vector for the line of intersection of two planes is any vector that is orthogonal to both planes.
A vector that is orthogonal to the normal plane is $\vec{n}_{1}=\vec{T}\left(\frac{\pi}{12}\right)$. A vector that is orthogonal to the osculating plane is $\vec{n}_{2}=\vec{B}\left(\frac{\pi}{12}\right)$. Note that the unit normal vector is parallel to the cross-product of $\vec{n}_{1} \times \vec{n}_{2}$. So, the unit normal vector may be used as the direction vector of the line of intersection: $\vec{v}=\vec{N}\left(\frac{\pi}{12}\right)$.
ANSWER: $x=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} t, y=\frac{\pi}{3}, z=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} t$

