Math 126G	First Midterm	Spring 2013
Your Name	Your Signature	
Student ID #		
	Josh Section 2:30 1	Dake

(circle one)

GA

GB

GC

GD

Problem	Total Points	Score
1	8	
2	7	
3	10	
4	7	
5	8	
6	10	
Total	50	

- \bullet This exam is closed book. You may use one $8\frac{1}{2}\times 11$ sheet of notes.
- Graphing calculators are not allowed.
- Do not share notes.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (7 points) Let $\mathbf{r}(t) = \frac{3}{1+t^2}\mathbf{i} + \frac{2t}{1+t^2}\mathbf{j}$. Calculate the integral $\int_0^1 \mathbf{r}(t) dt$. Give your answer in exact form.

 $\boxed{2}$ (8 points) Consider the curve in \mathbf{R}^2 with parametric equations $x = 4t^2 + t + 1, \quad y = t^4 + 2t.$ Give the coordinates of the points on the curve where the tangent line has slope 2.

- 3 (10 points) Consider the curves $\mathbf{r}_1(t) = \langle t+1, t^2+3, 3t+1 \rangle$ and $\mathbf{r}_2(s) = \langle s+4, s^2, -2s \rangle$.
 - (a) (5 points) At what point do the curves intersect?

(b) (5 points) Find the (acute) angle of intersection, correct to the nearest degree.

[4] (7 points) Calculate the area of the triangle in ${\bf R}^3$ with vertices (-1,1,1), (1,1,2) and (-1,4,3).

 $\boxed{5}$ (8 points) Let ℓ be the line \mathbf{R}^3 that passes through the points (1,2,3) and (4,1,-1). Find the coordinates of the point where ℓ intersects the xz-plane.

Math 126G First Midterm Spring 2013

[6] (10 points) Find an equation of the plane that passes through the points (0, -1, 1) and (2, -1, 2) and is perpendicular to the plane x + y = z.