Your Name


Your Signature
$\square$

Student ID \#


|  | Josh |  | Dake |  |
| ---: | :---: | :---: | :---: | :---: |
| Section | $2: 30$ | $1: 30$ | $2: 30$ | $1: 30$ |
| (circle one) | GA | GB | GC | GD |


| Problem | Total Points | Score |
| :---: | :---: | :---: |
| 1 | 8 |  |
| 2 | 7 |  |
| 3 | 10 |  |
| 4 | 7 |  |
| 5 | 8 |  |
| 6 | 10 |  |
| Total | 50 |  |

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed.
- Do not share notes.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (7 points) Let $\mathbf{r}(t)=\frac{3}{1+t^{2}} \mathbf{i}+\frac{2 t}{1+t^{2}} \mathbf{j}$. Calculate the integral $\int_{0}^{1} \mathbf{r}(t) d t$. Give your answer in exact form.

2 (8 points) Consider the curve in $\mathbf{R}^{2}$ with parametric equations $\quad x=4 t^{2}+t+1, \quad y=t^{4}+2 t$.
Give the coordinates of the points on the curve where the tangent line has slope 2 .

3 (10 points) Consider the curves $\mathbf{r}_{1}(t)=\left\langle t+1, t^{2}+3,3 t+1\right\rangle$ and $\mathbf{r}_{2}(s)=\left\langle s+4, s^{2},-2 s\right\rangle$.
(a) (5 points) At what point do the curves intersect?
(b) (5 points) Find the (acute) angle of intersection, correct to the nearest degree.

4 (7 points) Calculate the area of the triangle in $\mathbf{R}^{3}$ with vertices $(-1,1,1),(1,1,2)$ and $(-1,4,3)$.

5 (8 points) Let $\ell$ be the line $\mathbf{R}^{3}$ that passes through the points (1,2,3) and (4, 1, -1 ). Find the coordinates of the point where $\ell$ intersects the $x z$-plane.

6 (10 points) Find an equation of the plane that passes through the points $(0,-1,1)$ and $(2,-1,2)$ and is perpendicular to the plane $x+y=z$.

