1 (7 points) Let $\mathbf{r}(t)=\frac{3}{1+t^{2}} \mathbf{i}+\frac{2 t}{1+t^{2}} \mathbf{j}$. Calculate the integral $\int_{0}^{1} \mathbf{r}(t) d t$. Give your answer in exact form.

$$
\begin{aligned}
\int_{0}^{1} \mathbf{r}(t) d t & =3 \tan ^{-1} t \mathbf{i}+\left.\ln \left(1+t^{2}\right) \mathbf{j}\right|_{0} ^{1} \\
& =\frac{3 \pi}{4} \mathbf{i}+\ln 2 \mathbf{j}
\end{aligned}
$$

2 (8 points) Consider the curve in \mathbf{R}^{2} with parametric equations $\quad x=4 t^{2}+t+1, \quad y=t^{4}+2 t$. Give the coordinates of the points on the curve where the tangent line has slope 2 .
$\frac{d y}{d t}=4 t^{3}+2$ and $\frac{d x}{d t}=8 t+1$
We need to solve $\frac{d y}{d x}=2$
Since $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$, we can solve $\frac{d y}{d t}=2 \frac{d x}{d t}$.

$$
\begin{aligned}
\frac{d y}{d t} & =2 \frac{d x}{d t} \\
4 t^{3}+2 & =2 \cdot(8 t+1) \\
4 t^{3}-16 t & =0 \\
t & =0,2,-2
\end{aligned}
$$

$t=0$ gives the point $(1,0)$.
$t=2$ gives the point $(19,20)$
$t=-2$ gives the point $(15,12)$
(10 points) Consider the curves $\mathbf{r}_{1}(t)=\left\langle t+1, t^{2}+3,3 t+1\right\rangle$ and $\mathbf{r}_{2}(s)=\left\langle s+4, s^{2},-2 s\right\rangle$.
(a) (5 points) At what point do the curves intersect?

Solve the linear system

$$
\begin{aligned}
t+1 & =s+4 \\
3 t+1 & =-2 s
\end{aligned}
$$

to get $t=1, s=-2$.
Check that the y-coordinates work: $t^{2}+3=1^{2}+3=4$ and $s^{2}=(-2)^{2}=4$.
The curves intersect at $(2,4,4)$
(b) (5 points) Find the (acute) angle of intersection, correct to the nearest degree.

We calculate the angle θ between $\mathbf{r}_{1}^{\prime}(1)$ and $\mathbf{r}_{2}^{\prime}(-2)$.
$\mathbf{r}_{1}^{\prime}(t)=\langle 1,2 t, 3\rangle$ so $\mathbf{r}_{1}^{\prime}(1)=\langle 1,2,3\rangle$.
$\mathbf{r}_{2}^{\prime}(t)=\langle 1,2 s,-2\rangle$ so $\mathbf{r}_{2}^{\prime}(-2)=\langle 1,-4,-2\rangle$.

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{r}_{1}^{\prime}(1) \cdot \mathbf{r}_{2}^{\prime}(-2)}{\left|\mathbf{r}_{1}^{\prime}(1)\right|\left|\mathbf{r}_{2}^{\prime}(-2)\right|} \\
& =-\frac{13}{\sqrt{14} \sqrt{21}}
\end{aligned}
$$

This gives $\theta=139^{\circ}$. The acute angle is 41°.

4 (7 points) Calculate the area of the triangle in \mathbf{R}^{3} with vertices $(-1,1,1),(1,1,2)$ and $(-1,4,3)$.

Let $A=(-1,1,1), B=(1,1,2)$ and $C=(-1,4,3)$.
The area of the triangle is $\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|$.
$\overrightarrow{A B}=\langle 2,0,1\rangle \quad \overrightarrow{A C}=\langle 0,3,2\rangle$
$\overrightarrow{A B} \times \overrightarrow{A C}=\langle-3,-4,6\rangle$
$|\overrightarrow{A B} \times \overrightarrow{A C}|=\sqrt{61}$
The area of the triangle is $\frac{1}{2} \sqrt{61} \approx 3.9$

5 (8 points) Let ℓ be the line \mathbf{R}^{3} that passes through the points $(1,2,3)$ and $(4,1,-1)$. Find the coordinates of the point where ℓ intersects the $x z$-plane.

The direction vector of the line is $\langle 3,-1,-4\rangle$.
Parametric equations for the line are

$$
\begin{aligned}
& x=3 t+1 \\
& y=-t+2 \\
& z=-4 t+3
\end{aligned}
$$

The equation of the $x z$-plane is $y=0$.
Substituting the parametric equations into the plane equation gives $-t+2=0$, so $t=2$.
The corresponding point on the line is $(7,0,-5)$.

6 (10 points) Find an equation of the plane that passes through the points $(0,-1,1)$ and $(2,-1,2)$ and is perpendicular to the plane $x+y=z$.

Let $A=(0,-1,1)$ and $B=(2,-1,2)$.
The vector $\overrightarrow{A B}=\langle 2,0,1\rangle$ lies in the plane we want.
Let \vec{N} be the normal vector to $x+y=z$. So $\vec{N}=\langle 1,1,-1\rangle$.
Since the desired plane is perpendicular to the plane $x+y=z$, the normal vector \vec{N} also lies in the plane we want.
Thus $\overrightarrow{A B} \times \vec{N}$ is perpendicular to the desired plane.
$\overrightarrow{A B} \times \vec{N}=\langle-1,3,2\rangle$.
The plane we want has the form $-x+3 y+2 z=d$. Plugging in point A gives $d=-1$.
The desired plane is $-x+3 y+2 z=-1$.

