1 (7 points) Let $\mathbf{r}(t) = \frac{3}{1+t^2}\mathbf{i} + \frac{2t}{1+t^2}\mathbf{j}$. Calculate the integral $\int_0^1 \mathbf{r}(t) dt$. Give your answer in exact form.

$$\int_0^1 \mathbf{r}(t) dt = 3 \tan^{-1} t \, \mathbf{i} + \ln \left(1 + t^2 \right) \, \mathbf{j} \Big|_0^1$$
$$= \frac{3\pi}{4} \, \mathbf{i} + \ln 2 \, \mathbf{j}$$

2 (8 points) Consider the curve in \mathbb{R}^2 with parametric equations $x = 4t^2 + t + 1$, $y = t^4 + 2t$. Give the coordinates of the points on the curve where the tangent line has slope 2.

$$\frac{dy}{dt} = 4t^3 + 2 \text{ and } \frac{dx}{dt} = 8t + 1$$

We need to solve $\frac{dy}{dx} = 2$

Since $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$, we can solve $\frac{dy}{dt} = 2\frac{dx}{dt}$.

$$\frac{dy}{dt} = 2\frac{dx}{dt}$$

$$4t^3 + 2 = 2 \cdot (8t + 1)$$

$$4t^3 - 16t = 0$$

$$t = 0, 2, -2$$

t = 0 gives the point (1,0).

t=2 gives the point (19,20)

t = -2 gives the point (15, 12)

(10 points)

points) Consider the curves $\mathbf{r}_1(t) = \langle t+1, t^2+3, 3t+1 \rangle$ and $\mathbf{r}_2(s) = \langle s+4, s^2, -2s \rangle$.

(a) (5 points) At what point do the curves intersect?

Solve the linear system

$$t+1 = s+4$$
$$3t+1 = -2s$$

to get t = 1, s = -2.

Check that the y-coordinates work: $t^2 + 3 = 1^2 + 3 = 4$ and $s^2 = (-2)^2 = 4$.

The curves intersect at (2,4,4)

(b) (5 points) Find the (acute) angle of intersection, correct to the nearest degree.

We calculate the angle θ between $\mathbf{r}'_1(1)$ and $\mathbf{r}'_2(-2)$.

$$\mathbf{r}'_1(t) = \langle 1, 2t, 3 \rangle \text{ so } \mathbf{r}'_1(1) = \langle 1, 2, 3 \rangle.$$

$$\mathbf{r}'_2(t) = \langle 1, 2s, -2 \rangle \text{ so } \mathbf{r}'_2(-2) = \langle 1, -4, -2 \rangle.$$

$$\cos \theta = \frac{\mathbf{r}_1'(1) \cdot \mathbf{r}_2'(-2)}{|\mathbf{r}_1'(1)| |\mathbf{r}_2'(-2)|}$$
$$= -\frac{13}{\sqrt{14}\sqrt{21}}$$

This gives $\theta = 139^{\circ}$. The acute angle is 41° .

[4] (7 points) Calculate the area of the triangle in \mathbb{R}^3 with vertices (-1,1,1), (1,1,2) and (-1,4,3).

Let
$$A = (-1, 1, 1)$$
, $B = (1, 1, 2)$ and $C = (-1, 4, 3)$.

The area of the triangle is $\frac{1}{2}|\vec{AB} \times \vec{AC}|$.

$$\vec{AB} = \langle 2, 0, 1 \rangle$$
 $\vec{AC} = \langle 0, 3, 2 \rangle$

$$\vec{AB} \times \vec{AC} = \langle -3, -4, 6 \rangle$$

$$|\vec{AB} \times \vec{AC}| = \sqrt{61}$$

The area of the triangle is $\frac{1}{2}\sqrt{61} \approx 3.9$

[5] (8 points) Let ℓ be the line \mathbf{R}^3 that passes through the points (1,2,3) and (4,1,-1). Find the coordinates of the point where ℓ intersects the xz-plane.

The direction vector of the line is (3, -1, -4).

Parametric equations for the line are

$$x = 3t + 1$$

$$y = -t + 2$$

$$z = -4t + 3$$

The equation of the xz-plane is y = 0.

Substituting the parametric equations into the plane equation gives -t + 2 = 0, so t = 2.

The corresponding point on the line is (7,0,-5).

Find an equation of the plane that passes through the points (0, -1, 1) and

Let A = (0, -1, 1) and B = (2, -1, 2).

The vector $\vec{AB} = \langle 2, 0, 1 \rangle$ lies in the plane we want.

Let \vec{N} be the normal vector to x + y = z. So $\vec{N} = \langle 1, 1, -1 \rangle$.

(2,-1,2) and is perpendicular to the plane x+y=z.

Since the desired plane is perpendicular to the plane x + y = z, the normal vector \vec{N} also lies in the plane we want.

Thus $\vec{AB} \times \vec{N}$ is perpendicular to the desired plane.

$$\vec{AB} \times \vec{N} = \langle -1, 3, 2 \rangle.$$

The plane we want has the form -x + 3y + 2z = d. Plugging in point A gives d = -1.

The desired plane is -x + 3y + 2z = -1.