Your Name	Your Signature
Student ID #	
Your TA's name	Your Quiz Section Label and Time

Problem	Points	Possible
1		11
2		6
3		10
4		17
5		6
Total		50

- No books allowed. You may use a scientific calculator and one $8\frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning (except on the "short answer" questions).
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.

- 1. (11=2+3+3+3 points) Give an example of each of the following. (No explanation of answers needed for this problem. Be sure to explain your answers on other problems!)
 - (a) A nonzero vector \mathbf{v} such that $\mathrm{proj}_{\mathbf{j}}\mathbf{v}=\mathbf{0}$

(b) A vector of length 20 that is parallel to $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$. How many such vectors are there?

(c) A vector that is perpendicular to both $\mathbf{i} - \mathbf{k}$ and $\mathbf{j} + \mathbf{k}$. How many such vectors are there?

(d) Two nonzero vectors \mathbf{u} and \mathbf{v} such that $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}||\mathbf{v}|$.

2. (6 points) Find parametric equations for the line that contains the point (-2,3,5) and is parallel to the planes x+2y+z=4 and 2x+3z=9.

3

- 3. (10=3+2+2+3 points) Consider the surface $x = y^2 + z^2 4y 2z + 5$.
 - (a) Reduce this equation to one of the standard forms.

(b) Identify the trace of the surface in the plane x=1 (i.e., Is it an ellipse, a circle, a parabola, a hyperbola, etc?) and make a sketch of it.

(c) Identify the trace of the surface in the plane y=3. (i.e., Is it an ellipse, a circle, a parabola, a hyperbola, etc?) and make a sketch of it.

(d) Identify the surface (i.e., Is this an ellipsoid, paraboloid, cone, hyperboloid of one sheet, etc?) and make a sketch of it. Your picture does not have to be drawn to scale. I am only interested in seeing the shape and orientation.

- 4. (17=4+4+5+4 points) Consider the curve given by the vector function $\mathbf{r}(t) = \langle \cos t, \cos t, \sqrt{2} \sin t \rangle$, where $0 \le t \le 2\pi$.
 - (a) Compute $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$.

(b) Find a parametrization of the tangent line of this curve at the point $(1/2, 1/2, \sqrt{3/2})$.

(c) Find the curvature of this curve at the point $(1/2, 1/2, \sqrt{3/2})$.

(d) Reparametrize this curve with respect to arc length measured from the point where t=0 in the direction of increasing t.

5. (6 points) Find all points of intersection between the curve defined by the polar equation $r = \sec \theta + 2 \tan \theta$ and the vertical line x = 3 or explain why there are no intersection points.