Your Name


Your Signature
$\square$

Student ID \#


Your TA's name


Your Quiz Section Label and Time


| Problem | Points | Possible |
| :---: | :---: | :---: |
| 1 |  | 11 |
| 2 |  | 6 |
| 3 |  | 10 |
| 4 |  | 6 |
| 5 |  | 50 |
| Total |  |  |

- No books allowed. You may use a scientific calculator and one $8 \frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning (except on the "short answer" questions).
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.

1. $(\mathbf{1 1}=\mathbf{2}+\mathbf{3}+\mathbf{3}+\mathbf{3}$ points) Give an example of each of the following. (No explanation of answers needed for this problem. Be sure to explain your answers on other problems!)
(a) A nonzero vector $\mathbf{v}$ such that $\operatorname{proj}_{\mathbf{j}} \mathbf{v}=\mathbf{0}$
(b) A vector of length 20 that is parallel to $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$. How many such vectors are there?
(c) A vector that is perpendicular to both $\mathbf{i}-\mathbf{k}$ and $\mathbf{j}+\mathbf{k}$. How many such vectors are there?
(d) Two nonzero vectors $\mathbf{u}$ and $\mathbf{v}$ such that $|\mathbf{u} \cdot \mathbf{v}|=|\mathbf{u}||\mathbf{v}|$.
2. ( 6 points) Find parametric equations for the line that contains the point $(-2,3,5)$ and is parallel to the planes $x+2 y+z=4$ and $2 x+3 z=9$.
3. $\left(\mathbf{1 0}=\mathbf{3}+\mathbf{2}+\mathbf{2}+\mathbf{3}\right.$ points) Consider the surface $x=y^{2}+z^{2}-4 y-2 z+5$.
(a) Reduce this equation to one of the standard forms.
(b) Identify the trace of the surface in the plane $x=1$ (i.e., Is it an ellipse, a circle, a parabola, a hyperbola, etc?) and make a sketch of it.
(c) Identify the trace of the surface in the plane $y=3$. (i.e., Is it an ellipse, a circle, a parabola, a hyperbola, etc?) and make a sketch of it.
(d) Identify the surface (i.e., Is this an ellipsoid, paraboloid, cone, hyperboloid of one sheet, etc?) and make a sketch of it. Your picture does not have to be drawn to scale. I am only interested in seeing the shape and orientation.
4. $(\mathbf{1 7}=\mathbf{4}+\mathbf{4}+\mathbf{5}+\mathbf{4}$ points) Consider the curve given by the vector function $\mathbf{r}(t)=\langle\cos t, \cos t, \sqrt{2} \sin t\rangle$, where $0 \leq t \leq 2 \pi$.
(a) Compute $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}^{\prime \prime}(t)$.
(b) Find a parametrization of the tangent line of this curve at the point $(1 / 2,1 / 2, \sqrt{3 / 2})$.
(c) Find the curvature of this curve at the point $(1 / 2,1 / 2, \sqrt{3 / 2})$.
(d) Reparametrize this curve with respect to arc length measured from the point where $t=0$ in the direction of increasing $t$.
5. ( 6 points) Find all points of intersection between the curve defined by the polar equation $r=\sec \theta+2 \tan \theta$ and the vertical line $x=3$ or explain why there are no intersection points.
