BOLLEY SOLD

6 8 1. A D.

Your Name	Your Signature
engler William (1997) and a West Control	The state of the s
Student ID #	and dide visited process side
Your TA's name	Your Quiz Section Label and Time

21 - 3 - 1 - (13	, 49 kg pro-	Problem	Points	Possible	h. m ustic h
		1		11	13) 13 4 , 13
		2		6	
		3		10	*
		4	·	17	
		5		6	
West 18 1 (3)		Total		1 4 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

- No books allowed. You may use a scientific calculator and one $8\frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.

- In order to receive credit, you must show your work and explain your reasoning (except on the "short answer" questions).
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.

- 1. (11=2+3+3+3 points) Give an example of each of the following. (No explanation of answers needed for this problem. Be sure to explain your answers on other problems!)
 - (a) A nonzero vector \mathbf{v} such that $\text{proj}_i \mathbf{v} = \mathbf{0}$

(b) A vector of length 20 that is parallel to $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$. How many such vectors are there?

There are two such vectors.

They are
$$\pm \frac{20}{\sqrt{2} + 1^{2} + 2^{2}} \left(\frac{2}{3}, -1, -2\right) = \pm \frac{20}{3} \left(\frac{2}{3}, -1, -2\right)$$

So trey are $\left(\frac{40}{3}, -\frac{20}{3}, \frac{40}{3}\right)$ and $\left(-\frac{40}{3}, \frac{204}{3}, \frac{20}{3}\right)$

(c) A vector that is perpendicular to both $\mathbf{i} - \mathbf{k}$ and $\mathbf{j} + \mathbf{k}$. How many such vectors are there?

such vectors are there?

There are
$$\infty$$
—many such vectors. They all are multiples of $\langle 1, 0, -1 \rangle$
 $\times \langle 0, 1 \rangle = \langle 1, -1, +1 \rangle = \langle 1, -1, +1 \rangle = |\mathbf{u}||\mathbf{v}|.$

(d) Two nonzero vectors \mathbf{u} and \mathbf{v} such that $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}||\mathbf{v}|.$

2. (6 points) Find parametric equations for the line that contains the point (-2,3,5) and is parallel to the planes x + 2y + z = 4 and 2x + 3z = 9.

P(-2,3,5) $\bar{n}_{1}=\langle 1,2,1\rangle, \bar{n}_{2}=\langle 2,0,3\rangle$

The direction vector of this Rine

must be $1/\sqrt{p}$ \sqrt{p} \sqrt{p}

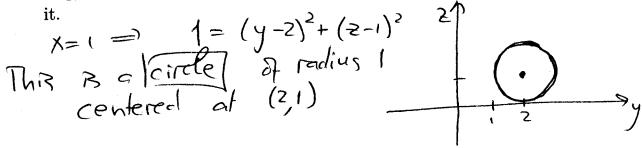
 $= \langle 6, -1, -4 \rangle$

So we can take V = 26, -1, -4).

parametre eggs of the Cino an then [x=-2+6t, y=3-t, z=5-4t]

and the state of the first of the state of the state of the same o

and the district of the company

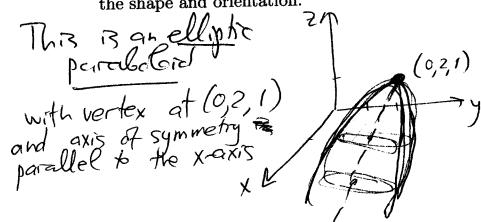

- 3. (10=3+2+2+3 points) Consider the surface $x = y^2 + z^2 4y 2z + 5$.
 - (a) Reduce this equation to one of the standard forms.

$$X = (y^{2} - 4y) + (2^{2} - 2z) + 5$$

$$X = (y^{2} - 4y + 4) + (z^{2} - 2z + 1)$$

$$X = (y - 2)^{2} + (z - 1)^{2}$$

(b) Identify the trace of the surface in the plane x = 1 (i.e., Is it an ellipse, a circle, a parabola, a hyperbola, etc?) and make a sketch of



(c) Identify the trace of the surface in the plane y = 3. (i.e., Is it an ellipse, a circle, a parabola, a hyperbola, etc?) and make a sketch of it.

$$y=3 \implies X = (3-2)^2 + (2-1)^2$$
 $X = 1 + (2-1)^2$

This is a parabola,

(d) Identify the surface (i.e., Is this an ellipsoid, paraboloid, cone, hyperboloid of one sheet, etc?) and make a sketch of it. Your picture does not have to be drawn to scale. I am only interested in seeing the shape and orientation.

4. (17=4+4+5+4 points) Consider the curve given by the vector function $\mathbf{r}(t) = \langle \cos t, \cos t, \sqrt{2} \sin t \rangle$, where $0 \le t \le 2\pi$

(a) Compute
$$\mathbf{r}'(t)$$
 and $\mathbf{r}''(t)$.

$$\vec{\tau}_{|t|} = \angle -\varsigma_{i} + \zeta_{i} + \zeta_$$

(b) Find a parametrization of the tangent line of this curve at the point $(1/2, 1/2, \sqrt{3/2})$.

$$(2, 1/2, \sqrt{3/2})$$
.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/2)$.
 $(3/$

$$P_{0}\left(\frac{1}{2},\frac{1}{2},\sqrt{\frac{3}{2}}\right) = \left(-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right)$$

$$P_{0}\left(\frac{1}{2},\frac{1}{2},\sqrt{\frac{3}{2}}\right)$$

$$prizmetric equil of the Cino of the Cino$$

(c) Find the curvature of this curve at the point $(1/2, 1/2, \sqrt{3/2})$.

(d) Reparametrize this curve with respect to arc length measured from the point where t=0 in the direction of increasing t.

the point where
$$t = 0$$
 in the direction of increasing t .

$$S = \int \Gamma'(u) du = \int \sqrt{(-\sin u)^2 + (-\sin u)^2 + (\sqrt{2}\cos u)^2} du$$

$$= \int \sqrt{2\sin^2 u + 2\cos^2 u} du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du$$

$$= \int \sqrt{2} \cdot u du = \int \sqrt{2} du = \int \sqrt{2} du$$

$$= \int \sqrt{2} du = \int \sqrt{2} du = \int \sqrt{2} du = \int \sqrt{2} du$$

$$= \int \sqrt{2} du = \int \sqrt{2} du = \int \sqrt{2} du = \int \sqrt{2} du = \int \sqrt{2} du$$

$$= \int \sqrt{2} du = \int \sqrt{2} du = \int \sqrt{2} du = \int \sqrt{2} du = \int \sqrt{2} du$$

$$= \int \sqrt{2} du = \int \sqrt{2} du$$

5.1 (6 points) Find all points of intersection between the curve defined by the polar equation $r = \sec \theta + 2 \tan \theta$ and the vertical line x = 3 or explain why there are no intersection points.

$$X = T \cos \theta$$

$$X = 3$$

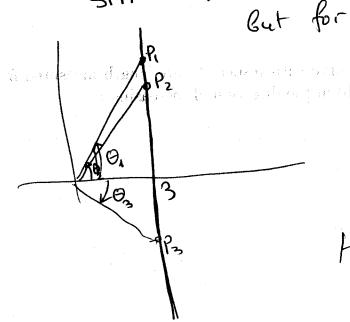
$$T = \sec \theta + 2 \tan \theta$$

$$\Rightarrow \sin \theta = 1$$

$$\Rightarrow \cos \theta = 0$$
But then $\sec \theta = \cot \theta = \cot \theta$

$$\Rightarrow \cot \theta = \cot \theta$$

$$\Rightarrow \cot \theta = \cot$$


[A slightly different reasoning (starting from &)

SPAD = 9 = \$\frac{7}{2} + 2\kappa.TT,

SPAD = 9 = \$\frac{7}{2} + 2\kappa.TT,

But for ptz on the line

x=3, THE REPORT OF THE PROPERTY OF

no pt on the

line x=3

satisfies an 0=1,

Hence the two curves

do Not intersect