Your Name
\square
Your Signature
\square
Student ID \#

Section	10:30	11:30
(circle one)	CA	CB

Problem	Total Points	Score
1	8	
2	8	
3	9	
4	8	
5	8	
6	50	
Total		

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed.
- Do not share notes.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (8 points) Let $\mathbf{r}(t)=t^{2} \mathbf{i}+t \sqrt{t-1} \mathbf{j}+t \sin \pi t \mathbf{k}$. Calculate the integral $\int_{1}^{2} \mathbf{r}(t) d t$. Give your answer in exact form.

2 (8 points) Consider the curve in \mathbf{R}^{2} with parametric equations $\quad x=1+t^{2}, \quad y=3 t-t^{3}$. For which values of t is the curve concave upward?

3 (9 points) Compute the distance from the point $(2,4,3)$ to the line of intersection of the two planes $x+y=2$ and $y+z=3$.

4 (8 points) Find an equation of the plane that passes through the origin and contains the line with symmetric equations $x-1=2-y=\frac{z+1}{4}$.

5 (8 points) Calculate the length of the curve

$$
x=\cos ^{3} t, y=\sin ^{3} t
$$

where $0 \leq t \leq 2 \pi$.

6 (9 points) At what point do the curves in \mathbf{R}^{3} intersect?

$$
\begin{aligned}
& \mathbf{r}_{1}(t)=\left\langle t-1,3 t, t^{2}\right\rangle \quad \text { and } \\
& \mathbf{r}_{2}(t)=\left\langle t+2,1-t, t^{3}+9\right\rangle
\end{aligned}
$$

Find their angle of intersection, correct to the nearest degree.

