(circle one)

 ${\rm CA}$

CB

Problem	Total Points	Score
1	8	
2	8	
3	9	
4	8	
5	8	
6	9	
Total	50	

- \bullet This exam is closed book. You may use one $8\frac{1}{2}\times 11$ sheet of notes.
- Graphing calculators are not allowed.
- Do not share notes.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (8 points) Let $\mathbf{r}(t) = t^2 \mathbf{i} + t \sqrt{t-1} \mathbf{j} + t \sin \pi t \mathbf{k}$. Calculate the integral $\int_1^2 \mathbf{r}(t) dt$. Give your answer in exact form.

[2] (8 points) Consider the curve in \mathbb{R}^2 with parametric equations $x = 1 + t^2$, $y = 3t - t^3$. For which values of t is the curve concave upward?

Math 126C First Midterm Spring 2014

3 (9 points) Compute the distance from the point (2,4,3) to the line of intersection of the two planes x + y = 2 and y + z = 3.

4 (8 points) Find an equation of the plane that passes through the origin and contains the line with symmetric equations $x - 1 = 2 - y = \frac{z+1}{4}$.

[5] (8 points) Calculate the length of the curve

$$x = \cos^3 t, \ y = \sin^3 t$$

where $0 \le t \le 2\pi$.

6 (9 points)

At what point do the curves in \mathbb{R}^3 intersect?

$$\mathbf{r}_1(t) = \langle t - 1, 3t, t^2 \rangle$$
 and $\mathbf{r}_2(t) = \langle t + 2, 1 - t, t^3 + 9 \rangle$

$$\mathbf{r}_2(t) = \langle t+2, 1-t, t^3+9 \rangle$$

Find their angle of intersection, correct to the nearest degree.