Math 126, Section D - Spring 2014 Midterm I April 24, 2014

Name: _____

Student ID Number: _

Section: DA 11:30-12:20 by Hailun DC 11:30-12:20 by Bo Peter

DB 12:30-1:20 by Hailun DD 12:30-1:20 by Bo Peter

exercise	possible	score
1	11	
2	11	
3	10	
4	10	
5	8	
total	50	

- Check that this booklet has all the exercises indicated above.
- TURN OFF YOUR CELL PHONE.
- Write your name and your student ID.
- This is a 50 minute test.
- You may use a scientific calculator and one 8.5×11 inch sheet of (twosided) handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Unless otherwise indicated, your answers should be exact instead of decimal approximations. For example $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.78.
- Unless otherwise indicated, show your work and justify all your answers. Box your final answer.

Exercise 1 (7+4=11 points).

Consider the points A = (2, 7, 1), B = (5, 3, 1) and C = (1, 0, 2).

(a) What is the area of the triangle that is formed by *ABC*?

(b) For the same triangle, what is the angle at corner *A*, rounded to the nearest degree?

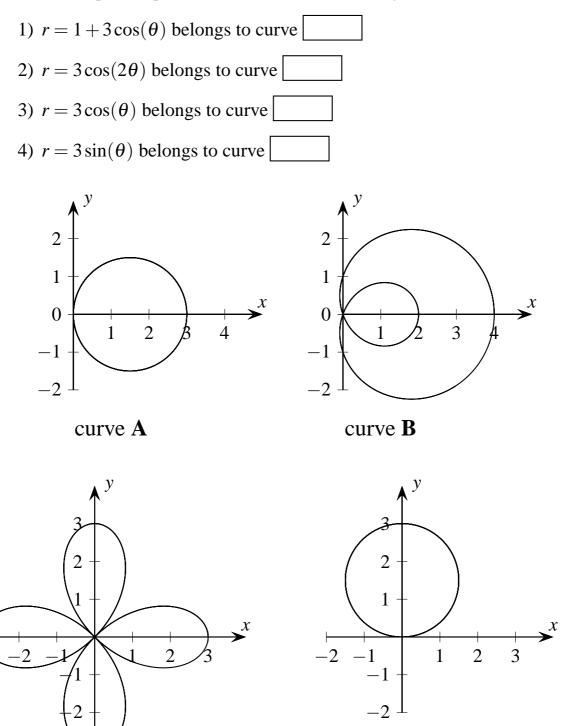
Exercise 2 (6 + 5 = 11 points).

a) Find an equation of the form Ax + By + Cz = D that describes the plane that contains the points P = (5, 2, 1), Q = (4, 2, 5) and R = (8, 3, 1).

b) The plane from above intersects the *xz*-plane in a line. Give the parametric equations of that line.

Exercise 3 (10 points).

For the curve $\vec{r}(t) = (3\sin(2t), \cos(4t))$, find the tangent line at $t = \frac{\pi}{8}$ and give its parametric equations. What is the slope of this tangent line?


Exercise 4 (10 points).

Compute the curvature $\kappa(t)$ for the curve $\vec{r}(t) = (t, t, t^2)$.

Exercise 5 (8 points).

curve C

Match each polar equation to the correct curve (no justification needed).

curve **D**