Math 126, Section D - Spring 2014 Midterm I
 April 24, 2014

Name: \qquad
Student ID Number:
Section: DA 11:30-12:20 by Hailun DC 11:30-12:20 by Bo Peter

DB 12:30-1:20 by Hailun
DD 12:30-1:20 by Bo Peter \square

exercise	possible	score
1	11	
2	11	
3	10	
4	10	
5	8	
total	50	

- Check that this booklet has all the exercises indicated above.

- TURN OFF YOUR CELL PHONE.

- Write your name and your student ID.
- This is a 50 minute test.
- You may use a scientific calculator and one 8.5×11 inch sheet of (twosided) handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Unless otherwise indicated, your answers should be exact instead of decimal approximations. For example $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.78 .
- Unless otherwise indicated, show your work and justify all your answers. Box your final answer.

Exercise 1 (7+4=11 points).

Consider the points $A=(2,7,1), B=(5,3,1)$ and $C=(1,0,2)$.
(a) What is the area of the triangle that is formed by $A B C$?
(b) For the same triangle, what is the angle at corner A, rounded to the nearest degree?

Exercise 2 ($6+5=11$ points $)$.

a) Find an equation of the form $A x+B y+C z=D$ that describes the plane that contains the points $P=(5,2,1), Q=(4,2,5)$ and $R=(8,3,1)$.
b) The plane from above intersects the $x z$-plane in a line. Give the parametric equations of that line.

Exercise 3 (10 points).

For the curve $\vec{r}(t)=(3 \sin (2 t), \cos (4 t))$, find the tangent line at $t=\frac{\pi}{8}$ and give its parametric equations. What is the slope of this tangent line?

Exercise 4 (10 points).
Compute the curvature $\kappa(t)$ for the curve $\vec{r}(t)=\left(t, t, t^{2}\right)$.

Exercise 5 (8 points).

Match each polar equation to the correct curve (no justification needed).

1) $r=1+3 \cos (\theta)$ belongs to curve \square
2) $r=3 \cos (2 \theta)$ belongs to curve \square
3) $r=3 \cos (\theta)$ belongs to curve \square
4) $r=3 \sin (\theta)$ belongs to curve \square

curve A

curve B

curve D

