Math 126, Section D - Spring 2014 Midterm I
 April 24, 2014

Name: \qquad
Student ID Number:
Section: DA 11:30-12:20 by Hailun DC 11:30-12:20 by Bo Peter

DB 12:30-1:20 by Hailun
DD 12:30-1:20 by Bo Peter \square

exercise	possible	score
1	11	
2	11	
3	10	
4	10	
5	8	
total	50	

- Check that this booklet has all the exercises indicated above.

- TURN OFF YOUR CELL PHONE.

- Write your name and your student ID.
- This is a 50 minute test.
- You may use a scientific calculator and one 8.5×11 inch sheet of (twosided) handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Unless otherwise indicated, your answers should be exact instead of decimal approximations. For example $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.78 .
- Unless otherwise indicated, show your work and justify all your answers. Box your final answer.

Sample solution

Exercise 1 (7+4=11 points).

Consider the points $A=(2,7,1), B=(5,3,1)$ and $C=(1,0,2)$.
(a) What is the area of the triangle that is formed by $A B C$?

Solution: We have $\overrightarrow{A B}=(3,-4,0), \overrightarrow{A C}=(-1,-7,1)$ and

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & -4 & 0 \\
-1 & -7 & 1
\end{array}\right|=(-4,-3,-21-4)=(-4,-3,-25)
$$

Then the area of the triangle is half the area of the parallelogram spanned by $\overrightarrow{A B} \times \overrightarrow{A C}$, thus

$$
\frac{1}{2}|(-4,-3,-25)|=\frac{1}{2} \sqrt{650}=\frac{5}{2} \sqrt{26} \quad(\approx 12.7475)
$$

(b) For the same triangle, what is the angle at corner A, rounded to the nearest degree?
Solution: We know that for this angle θ, we have
$\cos (\theta)=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}| \cdot|\overrightarrow{A C}|}=\frac{-3+28}{\sqrt{9+16} \cdot \sqrt{1+49+1}}=\frac{25}{\sqrt{25} \cdot \sqrt{51}}=\frac{5}{\sqrt{51}} \approx 0.7001$
and $\theta=\cos ^{-1}\left(\frac{5}{\sqrt{51}}\right) \approx 0.7952 \approx 45.56^{\circ}$, which we can round to 46°.

Exercise 2 ($6+5=11$ points).

a) Find an equation of the form $A x+B y+C z=D$ that describes the plane that contains the points $P=(5,2,1), Q=(4,2,5)$ and $R=(8,3,1)$.
Solution: We have $\overrightarrow{P Q}=(-1,0,4)$ and $\overrightarrow{P R}=(3,1,0)$. Then

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-1 & 0 & 4 \\
3 & 1 & 0
\end{array}\right|=(-4,12,-1)=: \vec{n}
$$

is the normal vector. Next, $P \cdot \vec{n}=5 \cdot(-4)+2 \cdot 12+1 \cdot(-1)=3$. Thus the plane is

$$
-4 x+12 y-z=3
$$

b) The plane from above intersects the $x z$-plane in a line. Give the parametric equations of that line.
Solution: The $x z$ plane consists of all points of the form $(x, 0, z)$, hence they need to satisfy $-4 x-z=3$.
We can take any two points in the intersection, for example $(0,0,-3)$ and $\left(-\frac{3}{4}, 0,0\right)$.
Then (one) direction vector of the line is $\left(\frac{3}{4}, 0,-3\right)$. Hence the line is

$$
\vec{r}(t)=(0,0,-3)+t\left(\frac{3}{4}, 0,-3\right)
$$

or in parametric equations

$$
x=\frac{3}{4} t, \quad y=0, \quad z=-3-3 t
$$

Exercise 3 (10 points).

For the curve $\vec{r}(t)=(3 \sin (2 t), \cos (4 t))$, find the tangent line at $t=\frac{\pi}{8}$ and give its parametric equations. What is the slope of this tangent line?

Solution: We have

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =(6 \cos (2 t),-4 \sin (4 t)) \\
\vec{r}\left(\frac{\pi}{8}\right) & =\left(3 \sin \left(\frac{\pi}{4}\right), \cos \left(\frac{\pi}{2}\right)\right)=\left(\frac{3}{\sqrt{2}}, 0\right) \approx(2.1213,0) \\
\vec{r}^{\prime}\left(\frac{\pi}{8}\right) & =\left(6 \cos \left(\frac{\pi}{4}\right),-4 \sin \left(\frac{\pi}{2}\right)\right)=\left(\frac{6}{\sqrt{2}},-4\right)
\end{aligned}
$$

The canonical parametric equation of the tangent line is

$$
x=\frac{3}{\sqrt{2}}+t \cdot \frac{6}{\sqrt{2}}, y=-4 t
$$

The slope is

$$
\frac{y^{\prime}\left(\frac{\pi}{8}\right)}{x^{\prime}\left(\frac{\pi}{8}\right)}=\frac{-4}{6 / \sqrt{2}}=-\frac{2}{3} \sqrt{2} \quad(\approx-0.9428)
$$

Exercise 4 (10 points).

Compute the curvature $\kappa(t)$ for the curve $\vec{r}(t)=\left(t, t, t^{2}\right)$.

Solution: We compute

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=(1,1,2 t) \\
&\left|\vec{r}^{\prime}(t)\right|=\sqrt{1+1+(2 t)^{2}}=\sqrt{2+4 t^{2}} \\
& \vec{r}^{\prime \prime}(t)=(0,0,2) \\
& \vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & 2 t \\
0 & 0 & 2
\end{array}\right|=(2,-2,0) \\
&\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right|=\sqrt{2^{2}+2^{2}}=\sqrt{8}
\end{aligned}
$$

Using the formula from the lecture

$$
\kappa(t)=\frac{\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|^{3}}=\frac{\sqrt{8}}{\left(2+4 t^{2}\right)^{3 / 2}}
$$

Exercise 5 (8 points).

Match each polar equation to the correct curve (no justification needed).

1) $r=1+3 \cos (\theta)$ belongs to curve
2) $r=3 \cos (2 \theta)$ belongs to curve \square
3) $r=3 \cos (\theta)$ belongs to curve \square
4) $r=3 \sin (\theta)$ belongs to curve \square

Solution: B

Solution: C
Solution: A
Solution: D

curve A

curve B

curve D

