Your Name

Your Signature
\square

Student ID \#

Your TA's name

Your Quiz Section Label and Time

Problem	Points	Possible
1		10
2		7
3		19
4		50
Total		

- No books allowed.
- You may use a scientific calculator and one $8 \frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning (except on the "short answer" questions).
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.

1. (10 points) Let a, b and \mathbf{c} be three nonzero coplanar vectors (that is, they lie in the same plane) in \mathbf{R}^{3}, and assume that no two of them are parallel. Let $\mathbf{v}=\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$. For each of the following statements determine whether it is True (\mathbf{T}) or False (\mathbf{F}).
No explanation of answers is needed for this problem. Be sure to explain your answers on other problems!
(a) \mathbf{v} is the zero vector. $\quad \mathbf{T} \quad \mathbf{F}$
(b) $\mathbf{v}=(\mathbf{b} \times \mathbf{c}) \times \mathbf{a}$
(c) $\mathbf{v} \cdot(\mathbf{b} \times \mathbf{c})=0$.

T F
(d) \mathbf{v} is perpendicular to the plane containing vectors \mathbf{a}, \mathbf{b} and \mathbf{c}.

T F
(e) \mathbf{v} is parallel to the plane containing vectors \mathbf{a}, \mathbf{b} and \mathbf{c}.

T $\quad \mathbf{F}$
2. (7 points) Write an equation of the plane that contains the line $\mathbf{r}(t)=\langle-2+t, 3-2 t, t\rangle$ and is perpendicular to the plane $x+y-2 z=1$.
3. (19 = $2+5+7+5$ points) Consider the curve $\mathbf{r}(t)=\left\langle-e^{t}, e^{t} \sin t, e^{t} \cos t\right\rangle$.
(a) Show that this curve lies on the cone $x^{2}=y^{2}+z^{2}$.
(b) Find parametric equations for the tangent line to this curve at the point $(-1,0,1)$.
(c) Find the curvature of this curve at the point $(-1,0,1)$.
(d) Find the length of the portion of this curve between the points $(-1,0,1)$ and $\left(-e^{\pi / 2}, e^{\pi / 2}, 0\right)$.
4. ($14=6+4+4$ points) Consider the following two curves: one is represented by the Cartesian equation $x+y=2$, and another one by the polar equation $r=\cos \theta-\sin \theta$.
(a) Find the slope of the tangent line to the second curve at the point corresponding to $\theta=\pi / 4$.
(b) Find a polar equation for the first curve.
(c) Find the points of intersection of these two curves, if any. Show your work!

