Your Name

Your Signature

Your TA's name

Your Quiz Section Label and Time

Problem	Points	Possible
1		10
2		7
3		19
4		14
Total		50

- No books allowed.
- You may use a scientific calculator and one $8\frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning (except on the "short answer" questions).
- Place a box around **YOUR FINAL ANSWER** to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.

GOOD LUCK!

1. (10 **points**) Let **a**, **b** and **c** be three nonzero coplanar vectors (that is, they lie in the same plane) in \mathbf{R}^3 , and assume that no two of them are parallel. Let $\mathbf{v} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$. For each of the following statements determine whether it is True (**T**) or False (**F**). No explanation of answers is needed for this problem. Be sure to explain your answers on other problems!

(a)	\mathbf{v} is the zero vector.	\mathbf{T}	\mathbf{F}
(b)	$\mathbf{v} = (\mathbf{b} imes \mathbf{c}) imes \mathbf{a}$	Т	\mathbf{F}
(c)	$\mathbf{v} \cdot (\mathbf{b} \times \mathbf{c}) = 0.$	Т	\mathbf{F}
(d)	${\bf v}$ is perpendicular to the plane containing vectors ${\bf a},{\bf b}$ and ${\bf c}.$	Т	\mathbf{F}
(e)	\mathbf{v} is parallel to the plane containing vectors \mathbf{a} , \mathbf{b} and \mathbf{c} .	\mathbf{T}	\mathbf{F}

2. (7 **points**) Write an equation of the plane that contains the line $\mathbf{r}(t) = \langle -2+t, 3-2t, t \rangle$ and is perpendicular to the plane x + y - 2z = 1.

- 3. (19 = 2 + 5 + 7 + 5 points) Consider the curve $\mathbf{r}(t) = \langle -e^t, e^t \sin t, e^t \cos t \rangle$.
 - (a) Show that this curve lies on the cone $x^2 = y^2 + z^2$.
 - (b) Find parametric equations for the tangent line to this curve at the point (-1, 0, 1).

(c) Find the curvature of this curve at the point (-1, 0, 1).

(d) Find the length of the portion of this curve between the points (-1, 0, 1) and $(-e^{\pi/2}, e^{\pi/2}, 0)$.

- 4. (14 = 6 + 4 + 4 points) Consider the following two curves: one is represented by the Cartesian equation x + y = 2, and another one by the polar equation $r = \cos \theta \sin \theta$.
 - (a) Find the slope of the tangent line to the second curve at the point corresponding to $\theta = \pi/4$.

(b) Find a polar equation for the first curve.

(c) Find the points of intersection of these two curves, if any. Show your work!