Exam I Answers

Math 126 E \& F Spring 2017

Version 1: $\operatorname{In} \# 1, A$ is the point $(3,0,4)$.

1. (a) area of the parallelogram is $\sqrt{137}$.
(b) One possible set of parametric equations for the line through A and C :

$$
x=3, y=3 t, z=4-5 t
$$

2. $a=2, b=-\frac{6}{\sqrt{5}}$ and $a=-2, b=\frac{6}{\sqrt{5}}$
3. (a) A direction vector for \mathbf{r}_{1} is $\mathbf{v}_{1}=\langle-2,1,-6\rangle$.

A direction vector for \mathbf{r}_{2} is $\mathbf{v}_{2}=\left\langle 1,-\frac{1}{2}, 3\right\rangle$.
Since $\mathbf{v}_{2}=-\frac{1}{2} \mathbf{v}_{1}$, the lines are parallel.
(b) $11 x+10 y-2 z=31$
4. (a) $\left(-10, \frac{\pi}{6}\right)$
(b) slope of the tangent line is $\frac{1}{2}$
5. The curve intersects the elliptic paraboloid at $t=5$.

$$
\kappa(5)=\frac{8 \sqrt{2}}{(1602)^{3 / 2}}
$$

Version 2: $\operatorname{In} \# 1, A$ is the point $(2,0,3)$.

1. (a) area of the parallelogram is $4 \sqrt{3}$.
(b) One possible set of parametric equations for the line through A and C :

$$
x=2, y=4 t, z=3-4 t .
$$

2. $a=2, b=-2 \sqrt{\frac{6}{5}}$ and $a=-2, b=2 \sqrt{\frac{6}{5}}$
3. (a) A direction vector for \mathbf{r}_{1} is $\mathbf{v}_{1}=\langle-3,2,-6\rangle$.

A direction vector for \mathbf{r}_{2} is $\mathbf{v}_{2}=\left\langle 1,-\frac{2}{3}, 2\right\rangle$.
Since $\mathbf{v}_{2}=-\frac{1}{3} \mathbf{v}_{1}$, the lines are parallel.
(b) $4 x+9 y+z=17$
4. (a) $\left(-10, \frac{\pi}{6}\right)$
(b) slope of the tangent line is $\frac{1}{2}$
5. The curve intersects the elliptic paraboloid at $t=3$.

$$
\kappa(3)=\frac{12 \sqrt{2}}{(1298)^{3 / 2}}
$$

