Math 126, Sections A and B, Winter 2011, Solutions to Midterm I

1. Answer the following questions about the triangle with vertices $A(1,4,5), B(1,8,8)$ and $C(3,6,5)$.
(a) Find the angle A.

$$
\cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}||\overrightarrow{A C}|}=\frac{<0,4,3>\cdot<2,2,0>}{\sqrt{16+9} \sqrt{4+4}}=\frac{8}{5 \sqrt{8}}=\frac{\sqrt{8}}{5}
$$

so $\theta=\cos ^{-1}\left(\frac{\sqrt{8}}{5}\right)$.
(b) Draw a line from the point A perpendicular to the side $B C$. Call the point where this line intersects $B C$ point D. Find the coordinats of point D. (3 points)
$\overrightarrow{B D}=\operatorname{proj}_{\overrightarrow{B C}} \overrightarrow{B A}=\frac{\overrightarrow{B A} \cdot \overrightarrow{B C}}{\overrightarrow{B C} \cdot \overrightarrow{B C}} \overrightarrow{B C}=\frac{<0,-4,-3>\cdot<2,-2,-3>}{<2,-2,-3>\cdot<2,-2,-3>}<2,-2,-3>=<2,-2,-3>$
so $D=C=(3,6,5)$. The angle C is 90 degrees.
(c) Find the area of the triangle.

You can use

$$
\text { Area }=\frac{1}{2}|\overrightarrow{B C}||\overrightarrow{A D}|
$$

or use the cross product, for example,

$$
\text { Area }=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|
$$

In any case, you should get $\sqrt{136} / 2$.
2. The line l_{1} is perpendicular the plane $2 x+3 y+z=24$ at the point $(4,5,1)$. The line l_{2} is the line passing through the points $(0,2,0)$ and $(6,11,3)$.
(a) Find the vector equation for the line l_{1}.

The direction vector for the line is the same as the normal vector for the plane so

$$
\mathbf{r}_{1}(t)=<4+2 t, 5+3 t, 1+t>
$$

(b) Find the vector equation for the line l_{2}.

$$
\mathbf{r}_{2}(s)=<6 s, 2+9 s, 3 s>
$$

(c) Are the two lines the same, skew, parallel or intersecting?

The have parallel direction vectors so they may be parallel. Since they are not the same (for example th epoint $(4,5,1)$ on the first line is not on the second one), they must be parallel.
3. Let C be the curved traced by the vector function $\mathbf{r}(t)=\langle 2 \cos t-\sin t, \sin t, \cos t\rangle$.
(a) Find two surfaces so C is their intersection. Use your surfaces to sketch and describe the shape of the curve.
The curve lies on the surfaces $y^{2}+z^{2}=1$ which is a circular right cylinder with the x axis running through its center and $2 z-y-x$ which is a plane. So the curve looks like an ellipse.
(b) Set up and integral to find the length of the curve you have above. Do not integrate. Since

$$
\mathbf{r}^{\prime}(t)=<-2 \sin t-\cos t, \cos t,-\sin t>
$$

the arclength is given by

$$
s=\int_{0}^{2 \pi} \sqrt{(-2 \sin t-\cos t)^{2}+(\cos t)^{2}+(-\sin t)^{2}} d t
$$

(c) Find the equation of the tangent line to the curve at the point where $t=\pi / 4$.

$$
\left.\mathbf{r}^{\prime}\left(\frac{\pi}{4}\right)=<-2 \sin \left(\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{4}\right), \cos \left(\frac{\pi}{4}\right),-\sin \left(\frac{\pi}{4}\right)\right\rangle=\frac{\sqrt{2}}{2}\langle-3,1,-1\rangle
$$

so the tangent line is given by

$$
\mathbf{r}_{1}(t)=\left\langle\frac{\sqrt{2}}{2}-3 t, \frac{\sqrt{2}}{2}+t, \frac{\sqrt{2}}{2}-t\right\rangle .
$$

4. (a) Match the following vector equations by the curves below. In all graphs, the z axis points up. (6 points)

$$
\begin{gathered}
\mathbf{r}_{\mathbf{1}}(t)=\langle\sin t, \cos t, \cos 7 t\rangle \quad \mathbf{r}_{\mathbf{2}}(t)=\langle 4 t \cos t, t, 4 t \sin t\rangle \quad \mathbf{r}_{\mathbf{3}}(t)=\langle 2 \cos t+1, \sin t+2,5 \cos t+1\rangle \\
\mathbf{r}_{\mathbf{4}}(t)=\langle 4 \cos t, t, 4 \sin t\rangle \quad \mathbf{r}_{\mathbf{5}}(t)=\left\langle t^{3}, 5 t, 2 t^{2}\right\rangle \quad \mathbf{r}_{\mathbf{6}}(t)=\left\langle 4 \cos t, t^{3}, 4 \sin t\right\rangle
\end{gathered}
$$

The pictures correspond to curves top row: $4,1,6$, and bottom row: 2, 5, 3 .
(b) Decide if the following are True or False. You do not need to explain your answer. (4 points)

1. False If $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are differentiable vector functions then $\frac{d}{d t}(\mathbf{u}(t) \times \mathbf{v}(t))=\mathbf{u}^{\prime}(t) \times \mathbf{v}^{\prime}(t)$.
2. True If $|\mathbf{r}(t)|=1$ for all t, then $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.
3. False If $\mathbf{u} \cdot \mathbf{v}=0$ then $\mathbf{u}=0$ or $\mathbf{v}=0$.
4. True For any two vectors \mathbf{u} and $\mathbf{v},(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$.
