Math 126, Section C - Winter 2015 Midterm I

February 3, 2015
Name: \qquad
Student ID Number:
Section: CA 11:30-12:20 by Sam \square CB 12:30-1:20 by Sam \square CC 11:30-12:20 by Ru-Yu

CD 12:30-1:20 by Ru-Yu

exercise	possible	score
1	7	
2	11	
3	8	
4	12	
5	12	
total	50	

- Check that this booklet has all the exercises indicated above.
- TURN OFF YOUR CELL PHONE.
- Write your name and your student ID.
- This is a 50 minute test.
- You may use a scientific calculator and one 8.5×11 inch sheet of (twosided) handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Unless otherwise indicated, your answers should be exact instead of decimal approximations. For example $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.78 .
- Unless otherwise indicated, show your work and justify all your answers. Box your final answer.

Exercise 1 (7 points).

Consider the points $A=(3,4,1), B=(4,-1,0)$ and $C=(1,2,2)$. What is the area of the triangle $A B C$?

Exercise 2 (11 points).

Consider the two lines in \mathbb{R}^{3} given by symmetric equations

$$
\ell_{1}: x-1=y+2=z-3 \quad \ell_{2}: \frac{x-4}{2}=y=z-5
$$

(a) Both lines intersect in exactly one point. Compute the angle of the intersection (rounded to the nearest degree).
(b) Find the equation of the plane that contains both lines ℓ_{1} and ℓ_{2}.

Exercise 3 (2+2+2+2=8 points).

We want to study the surface in \mathbb{R}^{3} that is described by the equation

$$
\frac{x^{2}}{9}-\frac{y^{2}}{4}+\frac{z^{2}}{16}+5=0
$$

a) Fill out the following table (no justification needed).
a parabola a hyperbola an ellipse empty other
The trace with the $x y$-plane is

The trace with the plane $y=2$ is

The trace with the plane $y=6$ is \square

b) Hence, the surface is an
\square elliptic cylinder parabolic cylinder hyperbolic cylinder ellipsoid
\square cone elliptic paraboloid hyperboloid of one sheet hyperboloid of two sheets

Exercise 4 (4+8=12 points).

The equation $r=2 \theta+1$ for $\theta \geq 0$ describes a curve in \mathbb{R}^{2} in polar coordinates.
a) List 3 points (in Cartesian coordinates) where the curve intersects the positive y-axis.
b) Consider the line that is tangent to the curve at $\theta=\pi$. What is its slope?

Exercise 5 (12 points).

Compute the curvature $\kappa(t)$ for the curve $\vec{r}(t)=\left(t+\sin (t), \frac{t^{3}}{\pi}, \cos (3 t)\right)$ at $t=\frac{\pi}{2}$ (I prefer an exact answer).

