Math 126, Section C - Winter 2015 Midterm I February 3, 2015

Name: ____

Student ID Number: _

Section: CA 11:30-12:20 by Sam

CC 11:30-12:20 by Ru-Yu

CB 12:30-1:20 by Sam CD 12:30-1:20 by Ru-Yu

exercise	possible	score
1	7	
2	11	
3	8	
4	12	
5	12	
total	50	

- Check that this booklet has all the exercises indicated above.
- TURN OFF YOUR CELL PHONE.
- Write your name and your student ID.
- This is a 50 minute test.
- You may use a scientific calculator and one 8.5×11 inch sheet of (two-sided) handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Unless otherwise indicated, your answers should be exact instead of decimal approximations. For example $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.78.
- Unless otherwise indicated, show your work and justify all your answers. Box your final answer.

Exercise 1 (7 points).

Consider the points A = (3,4,1), B = (4,-1,0) and C = (1,2,2). What is the area of the triangle *ABC*?

Exercise 2 (11 points).

Consider the two lines in \mathbb{R}^3 given by symmetric equations

$$\ell_1: x-1=y+2=z-3$$
 $\ell_2: \frac{x-4}{2}=y=z-5$

(a) Both lines intersect in exactly one point. Compute the angle of the intersection (rounded to the nearest degree).

(b) Find the equation of the plane that contains both lines ℓ_1 and ℓ_2 .

Exercise 3 (2+2+2+2=8 points).

We want to study the surface in \mathbb{R}^3 that is described by the equation

$$\frac{x^2}{9} - \frac{y^2}{4} + \frac{z^2}{16} + 5 = 0$$

a) Fill out the following table (no justification needed).

Exercise 4 (4+8=12 points).

The equation $r = 2\theta + 1$ for $\theta \ge 0$ describes a curve in \mathbb{R}^2 in polar coordinates.

a) List 3 points (in Cartesian coordinates) where the curve intersects the positive *y*-axis.

b) Consider the line that is tangent to the curve at $\theta = \pi$. What is its slope?

Exercise 5 (12 points).

Compute the curvature $\kappa(t)$ for the curve $\vec{r}(t) = (t + \sin(t), \frac{t^3}{\pi}, \cos(3t))$ at $t = \frac{\pi}{2}$ (I prefer an exact answer).