Math 126, Section C - Winter 2015 Midterm I February 3, 2015

Name: ____

Student ID Number: _

Section: CA 11:30-12:20 by Sam

CC 11:30-12:20 by Ru-Yu

CB 12:30-1:20 by Sam CD 12:30-1:20 by Ru-Yu

exercise	possible	score
1	7	
2	11	
3	8	
4	12	
5	12	
total	50	

- Check that this booklet has all the exercises indicated above.
- TURN OFF YOUR CELL PHONE.
- Write your name and your student ID.
- This is a 50 minute test.
- You may use a scientific calculator and one 8.5×11 inch sheet of (two-sided) handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Unless otherwise indicated, your answers should be exact instead of decimal approximations. For example $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.78.
- Unless otherwise indicated, show your work and justify all your answers. Box your final answer.

Sample solution

Exercise 1 (7 points).

Consider the points A = (3,4,1), B = (4,-1,0) and C = (1,2,2). What is the area of the triangle *ABC*?

Solution: We have $\overrightarrow{AB} = (1, -5, -1)$ and $\overrightarrow{AC} = (-2, -2, 1)$. Then

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -5 & -1 \\ -2 & -2 & 1 \end{vmatrix} = (-5 - 2, -(1 - 2), -2 - 10) = (-7, 1, -12)$$

The area is then

$$\frac{1}{2}|\vec{AB} \times \vec{AC}| = \frac{1}{2}\sqrt{7^2 + 1^2 + 12^2} = \boxed{\frac{1}{2}\sqrt{194}} \approx 6.9642$$

Exercise 2 (11 points).

Consider the two lines given by symmetric equations

$$\ell_1: x-1=y+2=z-3$$
 $\ell_2: \frac{x-4}{2}=y=z-5$

(a) Both lines intersect in exactly one point. Compute the angle of the intersection (rounded to the nearest degree).

Solution:

- Line ℓ_1 contains for example the points (1, -2, 3) and (2, -1, 4). Hence the direction vector the line is (1, 1, 1).
- Line l₂ contains for example the points (4,0,5) and (2,-1,4) and hence the direction vector is (2,1,1). The angle θ between both direction vectors satisfies

$$\cos(\theta) = \frac{(1,1,1) \cdot (2,1,1)}{|(1,1,1)| \cdot |(2,1,1)|} = \frac{4}{\sqrt{3} \cdot \sqrt{6}} = \frac{4}{\sqrt{18}}$$

Hence $\theta = \cos^{-1}(\frac{4}{\sqrt{18}}) \approx 19.4712^{\circ}$ which can be rounded to $\boxed{19^{\circ}}$ (0.3398 in radiants).

(In fact, (2, -1, 4) is the unique point where ℓ_1 and ℓ_2 intersect, but we didn't ask for that one.)

(b) Find the equation of the plane that contains both lines ℓ_1 and ℓ_2 . **Solution:** We already learned that the plane contains the directions (1,1,1) and (2,1,1). Their cross product is

$$(1,1,1) \times (2,1,1) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{vmatrix} = (0,-(1-2),1-2) = (0,1,-1)$$

Since $(4,0,5) \cdot (0,1,-1) = -5$, the equation of the plane is

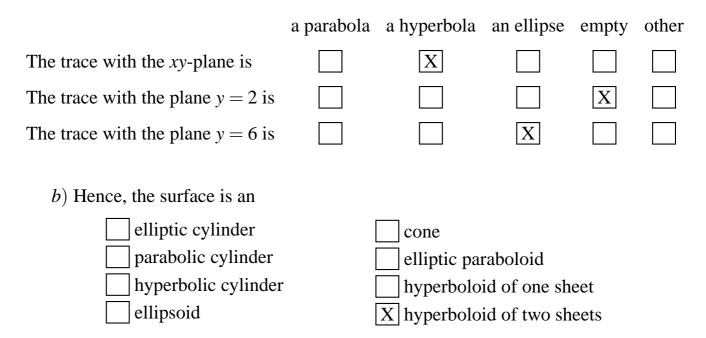
$$y-z=-5$$

Exercise 3 (2+2+2+2=8 points).

We want to study the surface in \mathbb{R}^3 that is described by the equation

$$\frac{x^2}{9} - \frac{y^2}{4} + \frac{z^2}{16} + 5 = 0$$

a) Fill out the following table (no justification needed).



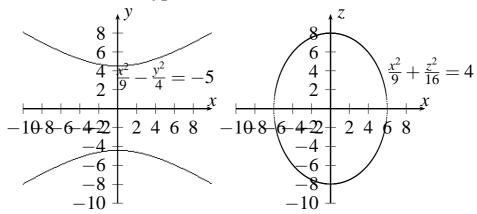
Solution:

- The trace with the *xy*-plane is \$\frac{x^2}{9} \frac{y^2}{4} = -5\$ which is a hyperbola.
 The trace with the plane \$y = 2\$ is

$$\frac{x^2}{9} + \frac{z^2}{16} = -4$$

which has **no solution**.

- The trace with the plane $y = \pm 6$ is $\frac{x^2}{9} + \frac{z^2}{16} = 4$ which is an ellipse.
- Overall the surface is a hyperboloid of two sheets.



Exercise 4 (4+8=12 points).

The equation $r = 2\theta + 1$ for $\theta \ge 0$ describes a curve in \mathbb{R}^2 in polar coordinates.

a) List 3 points (in Cartesian coordinates) where the curve intersects the positive *y*-axis.

Solution: The first 3 points are

angle	point	
$\theta = \pi/2$	$(0, \pi + 1) \approx (0, 4.1416)$	
$\theta = (5/2)\pi$	$(0,5\pi+1) \approx (0,16.70796)$	
$\theta = (9/2)\pi$	$(0,9\pi+1) \approx (0,29.2743)$	

b) Consider the line that is tangent to the curve at $\theta = \pi$. What is its slope?

Solution: In Cartesian coordinates, the curve can be described as the vector function

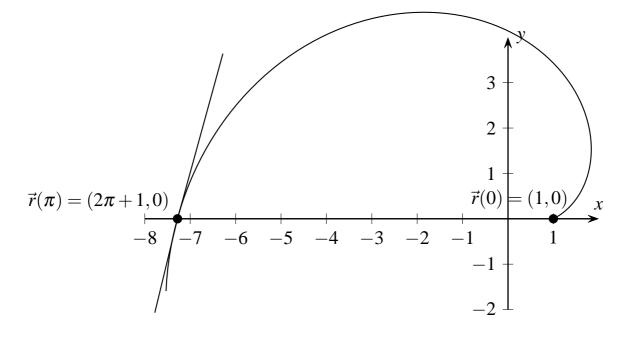
$$\vec{r}(\theta) = (x(\theta), y(\theta)) = ((2\theta + 1) \cdot \cos(\theta), (2\theta + 1) \cdot \sin(\theta)).$$

The derivative vector is

$$\vec{r}'(\theta) = (x'(\theta), y'(\theta)) = (2\cos(\theta) - (2\theta + 1)\sin(\theta), 2\sin(\theta) + (2\theta + 1)\cos(\theta)).$$

and $\vec{r}'(\pi) = (-2, -2\pi - 1)$. The slope at $\theta = \pi$ is

$$\frac{y'(\pi)}{x'(\pi)} = \frac{-2\pi - 1}{-2} = \pi + \frac{1}{2}$$



Exercise 5 (12 points).

Compute the curvature $\kappa(t)$ for the curve $\vec{r}(t) = (t + \sin(t), \frac{t^3}{\pi}, \cos(3t))$ at $t = \frac{\pi}{2}$ (I prefer an exact answer).

Solution: We compute

$$\vec{r}'(t) = (1 + \cos(t), \frac{3t^2}{\pi}, -3\sin(3t))$$
$$\vec{r}'(\frac{\pi}{2}) = (1, \frac{3}{4}\pi, 3)$$
$$|\vec{r}'(\frac{\pi}{2})| = \sqrt{10 + \frac{9}{16}\pi^2}$$
$$\vec{r}''(t) = (-\sin(t), \frac{6t}{\pi}, -9\cos(3t))$$
$$\vec{r}''(\frac{\pi}{2}) = (-1, 3, 0)$$
$$\vec{r}''(t) \times \vec{r}''(t) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & \frac{3}{4}\pi & 3 \\ -1 & 3 & 0 \end{vmatrix} = (-9, -3, 3 + \frac{3}{4}\pi)$$
$$|\vec{r}'(t) \times \vec{r}''(t)| = \sqrt{99 + \frac{9}{2}\pi + \frac{9}{16}\pi^2}$$

Using the formula from the lecture we get

$$\kappa(t) = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3} \stackrel{\text{for } t = \frac{\pi}{2}}{=} \frac{\sqrt{99 + \frac{9}{2}\pi + \frac{9}{16}\pi^2}}{(10 + \frac{9}{16}\pi^2)^{3/2}}$$