1. [6 points per part] Here are some short, unrelated plane problems.
(a) Find the plane through the points $\frac{(1,2,3)}{A}, \frac{(2,3,4)}{B}$, and $\frac{(4,6,8)}{C}$.

$$
\begin{aligned}
\overrightarrow{A B} & =\langle 1,1,1\rangle \\
\overrightarrow{A C} & =\langle 3,4,5\rangle \\
\overrightarrow{A B} \times \overrightarrow{A C} & =\langle 1,-2,1\rangle \rightarrow \begin{array}{c}
\text { normal vector } \\
\text { of plane }
\end{array}
\end{aligned}
$$

$$
S_{0}: \quad(x-1)-2(y-2)+(z-3)=0
$$

or:

$$
x-2 y+z=0
$$

(b) Find the line of intersection of the planes $y=2 x+3$ and $4 x-5 y+2 z=7$. Write your answer in parametric form.

Leis arbitrarily set $x=t$.

$$
\text { So } \begin{aligned}
& y= 2 t+3, \\
& \text { and } \begin{aligned}
& 2 z=7-4 x+5 y \\
& \\
& \downarrow \\
& z=\frac{7}{2}-2 t+\frac{5}{2}(2 t+3) \\
& z=11+3 t
\end{aligned} \begin{array}{l}
x=t \\
y=3+2 t \\
z
\end{array} \quad 11+3 t
\end{aligned}
$$

2. [2 points per part] Suppose $\mathbf{u}$ and $\mathbf{v}$ are 3D vectors that look like this: That is, $\mathbf{u}$ points along the positive $x$-axis, and $\mathbf{v}$ is in the $y z$-plane.
(You don't have to show work on this problem.)


Identify the following values as positive, negative, or zero. (Circle your answer.)
(a) $\mathbf{u} \cdot \mathbf{v}$ :
positive
negative
zero
(b) The $x$-component of $\mathbf{u} \times \mathbf{v}$ :
positive
negative
zero
(c) The $y$-component of $\mathbf{u} \times \mathbf{v}$ :
positive
negative
zero
(d) The z-component of $\mathbf{u} \times \mathbf{v}$ :
positive
negative
zero
3. [7 points] Graph the polar curve $r=\frac{1}{\sin (\theta)-\cos (\theta)}$. Please label the scales on your axes. (Hint: This is a graph you've seen before. Don't just draw a picture; do some algebra first.)

$$
\begin{gathered}
r(\sin \theta-\cos \theta)=1 \\
r \sin \theta-r \cos \theta=1 \\
y-x=1 \\
y=x+1 \longrightarrow \begin{array}{l}
\text { hey, that's } \\
a
\end{array} \\
\begin{array}{l}
\text { a line! }
\end{array}
\end{gathered}
$$


4. [8 points] You just got a job at Quadricorp, the company that builds quadric surfaces. Your first assignment: make a hyperboloid of two sheets following these specifications:

- The hyperboloid "points" along the $z$-axis.
- The hyperboloid goes through the points $(0,0,2),(3,0,4)$, and $(6,4,8)$.

Give the equation of this hyperboloid.

$$
\begin{aligned}
& \frac{-x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \\
& -0-0+\frac{4}{c^{2}}=1 \rightarrow c^{2}=4
\end{aligned}
$$

$$
\frac{-9}{a^{2}}-0+\frac{16}{4}=1 \rightarrow a^{2}=3
$$



$$
\begin{gathered}
\frac{-36}{3}-\frac{16}{b^{2}}+\frac{64}{4}=1 \\
\downarrow \\
b^{2}=\frac{16}{3}
\end{gathered}
$$

5. [7 points] Consider the vector function $\mathbf{r}(t)=\left\langle t^{2}-3 t, \sqrt{t+1}, t^{2}+t\right\rangle$.

Let $\ell$ be the line tangent to the space curve of $\mathbf{r}(t)$ at the point $(0,2,12)$. Write parametric equations for $\ell$.

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\left\langle 2 t-3, \frac{1}{2 \sqrt{t+1}}, 2 t+1\right\rangle \\
& \vec{r}^{\prime}(3)=\left\langle 3, \frac{1}{4}, 7\right\rangle<\text { direction ot line }
\end{aligned}
$$

So:

$$
\begin{aligned}
& x=3 t \\
& y=2+\frac{1}{4} t \\
& z=12+7 t
\end{aligned}
$$

6. [10 points] The acceleration of a friendly bee at time $t$ is given by the vector function

$$
\mathbf{a}=\left\langle 6,6 t, e^{t}\right\rangle
$$

At time $t=0$, the bee is at the origin. At time $t=2$, the bee is at the point $(4,5,6)$.
Where is the bee at time $t=3$ ?

$$
\begin{aligned}
& \vec{V}(t)=\left\langle 6 t+C_{1}, 3 t^{2}+C_{2}, e^{t}+C_{3}\right\rangle \\
& \stackrel{\rightharpoonup}{r}(t)=\left\langle 3 t^{2}+C_{1} t+C_{4}, t^{3}+C_{2} t+C_{5}, e^{t}+C_{3} t+C_{6}\right\rangle \\
& \vec{r}(0)=\left\langle C_{4}, C_{5}, 1+C_{6}\right\rangle=\langle 0,0,0\rangle, \text { so } \begin{array}{l}
C_{4}=0 \\
C_{5}=0
\end{array} \\
& C_{6}=-1 \\
& \vec{r}(2)=\left\langle 12+2 c_{1}, 8+2 c_{2}, e^{2}+2 c_{3}-1\right\rangle=\langle 4,5,6\rangle \\
& \text { so } \quad C_{1}=-4 \\
& C_{2}=\frac{-3}{2} \\
& C_{3}=\frac{7-e^{2}}{2} \\
& \text { So: } \vec{r}(t)=\left\langle 3 t^{2}-4 t, t^{3}-\frac{3}{2} t, e^{t}+\left(\frac{7-e^{2}}{2}\right) t-1\right\rangle \\
& \vec{r}(3)=\left\langle 15,22.5, e^{3}+\left(\frac{7-e^{e}}{2}\right) 3-1\right\rangle \\
& \left(15,22.5, e^{3}-\frac{-3 a^{2}}{} a^{2}+9.5\right)
\end{aligned}
$$

7. I've got some vectors $\mathbf{a}$ and $\mathbf{b}$. Here's a picture:
(a) [2 points] In the picture to the right, draw $\operatorname{proj}_{\mathrm{a}}\left(\mathbf{p r o j}_{\mathrm{b}} \mathbf{a}\right)$. (Clearly label your work so I can see what's going on.)
(b) [6 points] Suppose I know the following:

- $\mathbf{a}=\langle 4,2,4\rangle$.
- $\operatorname{proj}_{\mathbf{a}}\left(\boldsymbol{\operatorname { p r o j }}_{\mathbf{b}} \mathbf{a}\right)=\left\langle 3, \frac{3}{2}, 3\right\rangle$.
- $\theta$ is acute.


What's $\theta$ ?

$$
\begin{aligned}
& |\vec{a}|=\sqrt{16+4+16}=6 \\
& \left|p^{\circ} \jmath_{\vec{a}}\left(p r o j_{\vec{b}} \vec{a}\right)\right|=\sqrt{9+\frac{9}{4}+9}=4.5
\end{aligned}
$$



$$
\cos \theta=\frac{4.5}{y}, \quad \text { and }
$$

$$
\cos \theta=\frac{y}{6}
$$

$$
\text { so } \cos \theta=\frac{4.5}{6 \cos \theta}
$$



$$
\cos ^{2} \theta=\frac{3}{4}
$$



