1. [5 points per part] For this problem, consider the points

$$
A=(2,3,3) \quad B=(1,1,1) \quad C=(1,4,-3)
$$

(a) Compute the angle $\angle A B C$.

$$
\begin{array}{ll}
\overrightarrow{B A}=\langle 1,2,2\rangle & \overrightarrow{B A} \cdot \overrightarrow{B C}=0+6-8=-2 \\
\overrightarrow{B C}=\langle 0,3,-4\rangle & \overrightarrow{B A} \cdot \overrightarrow{B C}=|\overrightarrow{B A}||\overrightarrow{B C}| \cos \theta \\
|\overrightarrow{B A}|=\sqrt{1+4+4}=3 & -2=3.5 \cdot \cos \theta \\
|\overrightarrow{B C}|=\sqrt{9+16}=5 & \theta=\cos ^{-1}\left(\frac{-2}{15}\right) \approx 1.705 \mathrm{mal}=97.7^{\circ}
\end{array}
$$

(b) Find the equation of the plane containing A, B, and C.

$$
\begin{aligned}
& \overrightarrow{B A} \times \overrightarrow{B C}=\underbrace{\langle-14,4,3\rangle}_{\text {normal rector }} \\
& -14(x-2)+4(y-3)+3(z-3)=0 \\
& \text { or }-14 x+4 y+3 z=-7
\end{aligned}
$$

(c) Find the coordinates of the point P marked in the below parallelogram. (C is the midpoint of $A Q$.)

2. [2 points per part] For each of the following objects, figure out how they intersect.

Circle one option. You do not need to show work on this problem.
(a) The line $x=t, y=3 t, z=1-4 t$ and the plane $x+3 y-4 z=7$.
a point a line a plane
no intersection Line is normal to plane, so they intersect ar a point.
(b) The line $x=t, y=2 t, z=3 t$ and the plane $x+y-z=1$.
a point a line
a plane
no intersection

$$
t+2 t-3 t=1 \rightarrow 0=1 \text {, no solutions }
$$

(c) The planes $2 x+4 y+6 z=2$ and $3 x+6 y+9 z=3$.
a point
a line
no intersection These are the same plane!
(d) The planes $x+4 y-2 z=1$ and $x+4 y+2 z=7$.
a point
a line
a plane
no intersection These planes are not parallel, so they intersect in a line.
3. You do not need to show work on parts (a) and (b). Please show work on part (c).
(a) [3 points] Give an example of a vector a such that $\mathbf{a} \cdot \mathbf{a}=7$.

Any rector where $|\vec{a}|=\sqrt{7}$, e.g. $\langle\sqrt{7}, 0,0\rangle$
(b) [3 points] Give an example of a vector a such that $\operatorname{comp}_{\mathbf{a}}\langle 1,2,3\rangle=-2$.

One way: any vector that points along
the negative y-axis like

$$
a=\langle 0,-1,0\rangle
$$

(c) [5 points] Give an example of two nonzero vectors \mathbf{a} and \mathbf{b} such that $|\mathbf{a} \times \mathbf{b}|=-\mathbf{a} \cdot \mathbf{b}$.

$$
\begin{aligned}
|\vec{a}||t| \sin \theta & =-|\vec{a}||t| \cos \theta \\
\tan \theta & =-1 \rightarrow \theta=\frac{3 \pi}{4}
\end{aligned}
$$

Any vectors that make an angle of $\frac{3 \pi}{4}$,

$$
\text { e.g }\langle 1,0,0\rangle \text { and }\langle-1,1,0\rangle
$$

4. [8 points] Find the equation of the ellipsoid which is centered at the origin and contains the points $(3,8,0),(5,0,0)$, and $(2,1,1)$.

5. [6 points] Consider the line in the following graph.

Convert the equation for this line to polar form.
Write your final answer in the form $r=$ [some function of θ.

6. [6 points per part] The force exerted on an $8-\mathrm{kg}$ cat at time t is given by the vector function

$$
\vec{F}(t)=\langle 16 t, 24,8 \sqrt{t+7}\rangle \quad \text { Newtons. }
$$

At time $t=0$, the cat is at the point $(1,2,3)$. At time $t=2$, the cat is at rest.
(a) Find parametric equations for the line tangent to the cat's path at time $t=0$.

$$
\text { Acceleration }=\vec{a}(t)=\frac{\vec{F}}{m}=\langle 2 t, 3, \sqrt{t+7}\rangle
$$

$$
\begin{aligned}
& \vec{v}(t)=\left\langle t^{2}+C_{1}, 3 t+C_{2}, \frac{2}{3}(t+7)^{3 / 2}+C_{3}\right\rangle \\
& \vec{v}(2)=\left\langle 4+C_{1}, 6+C_{2}, \frac{2}{3}(27)+C_{3}\right\rangle=\langle 0,0,0\rangle \underset{\longrightarrow}{\longrightarrow} C_{2}=-4 \\
& \longrightarrow C_{3}=-6
\end{aligned}
$$

$$
\vec{v}(0)=\left\langle c_{1}, c_{2}, \frac{2}{3}(7)^{3 / 2}+c_{3}\right\rangle=\underbrace{\left\langle-4,-6, \frac{2}{3}(7)^{3 / 2}-18\right\rangle}_{\text {direction }}
$$

$$
\begin{aligned}
& x=1-4 t \\
& y=2-6 t \\
& z=3+\left(\frac{2}{3}(7)^{3 / 2}-18\right) t
\end{aligned}
$$

(b) Find the tangential component of acceleration of the cat at time $t=0$.

$$
\begin{aligned}
\vec{v}(0) & =\left\langle-4,-6, \frac{2}{3}(7)^{3 / 2}-18\right\rangle, \vec{a}(0)=\langle 0,3, \sqrt{7}\rangle \\
a_{T} & =\frac{\vec{v}(0) \cdot \vec{a}(0)}{|\vec{v}(0)|}=\frac{\left.-18+\frac{2}{3}(49)-18 \sqrt{7}\right)}{\left|\left\langle-4,-6, \frac{2}{3}(7)^{3 / 2}-18\right\rangle\right|} \\
& =\frac{-18+\frac{2}{3}(49)-18 \sqrt{7}}{\sqrt{16+36+\left(\frac{2}{3}(7)^{3 / 2}-18\right)^{2}}}
\end{aligned}
$$

