Math 126C	First Midterm	Winter 2009
Your Name Student ID #	Your Signature	
	Luke Section 11:30 12:30 (circle one) CA CB	Chris 11:30 12:30 CC CD

Problem	Total Points	Score
1	5	
2	5	
3	8	
4	6	
5	12	
6	8	
7	6	
Total	50	

- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed.
- Do not share notes.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- Place a box around **YOUR FINAL ANSWER** to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

First Midterm

1 (5 points) Calculate the equation of the tangent line to the curve $r = 1 + 2\cos(\theta)$ at the point where $\theta = \pi/2$. Give your equation in terms of x and y.

2 (5 points) Compute the distance from the point (3, 2, 1) to the plane x + 2y + 3z = 1.

First Midterm

3 (8 points) Compute parametric equations for the line that contains the point (-1, 2, -3)and is parallel to both of the planes 2x - y = 3 and x - 2y + 3z = 2.

4 (6 points) Find a vector function $\mathbf{r}(t)$ that represents the curve of intersection of the surfaces $4x^2 + (z-1)^2 = 9$ and $y = 3x^2$.

First Midterm

- 5 (12 points) Let $\mathbf{r}(t) = \langle t^3, t^2, t^3 2t \rangle$.
 - (a) (6 points) Compute the curvature κ at the point (-1, 1, 1).

(b) (6 points) Find the arclength of this curve between the points (-1, 1, 1) and (1, 1, -1). Set up the integral, but do not evaluate.

First Midterm

6 (8 points) Find the exact coordinates of the lowest point on the curve in \mathbf{R}^2 given by the parametric equations $x = 2\cos(t) + \sin(t)$, $y = \sin(t) - \cos(t)$.

7 (6 points) A particle in \mathbb{R}^3 has position function $\mathbf{r}(t) = \langle 2t^3 + 1, t^2, 3t - t^2 \rangle$. Find the speed of the particle when t = 2.