Your Name

Your Signature
\square

Student ID \#

	Luke		Chris	
Section	11:30	12:30	$11: 30$	$12: 30$
(circle one)	CA	CB	CC	CD

Problem	Total Points	Score
1	5	
2	5	
3	8	
4	6	
5	12	
6	8	
7	50	
Total	6	

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed.
- Do not share notes.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (5 points) Calculate the equation of the tangent line to the curve $r=1+2 \cos (\theta)$ at the point where $\theta=\pi / 2$. Give your equation in terms of x and y.

2 (5 points) Compute the distance from the point $(3,2,1)$ to the plane $x+2 y+3 z=1$.

3 (8 points) Compute parametric equations for the line that contains the point $(-1,2,-3)$ and is parallel to both of the planes $2 x-y=3$ and $x-2 y+3 z=2$.

4 (6 points) Find a vector function $\mathbf{r}(t)$ that represents the curve of intersection of the surfaces $4 x^{2}+(z-1)^{2}=9$ and $y=3 x^{2}$.

5 (12 points) Let $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t^{3}-2 t\right\rangle$.
(a) (6 points) Compute the curvature κ at the point $(-1,1,1)$.
(b) (6 points) Find the arclength of this curve between the points ($-1,1,1$) and ($1,1,-1$). Set up the integral, but do not evaluate.

6 (8 points) Find the exact coordinates of the lowest point on the curve in \mathbf{R}^{2} given by the parametric equations $x=2 \cos (t)+\sin (t), \quad y=\sin (t)-\cos (t)$.

7 (6 points) A particle in \mathbf{R}^{3} has position function $\mathbf{r}(t)=\left\langle 2 t^{3}+1, t^{2}, 3 t-t^{2}\right\rangle$. Find the speed of the particle when $t=2$.

