Your Name

Your Signature
\square

Student ID \#

Your TA's name

Your Quiz Section Label and Time

Problem	Possible	Points
1	11	
2	9	
3	10	
4	10	
5	10	
Total	50	

- No books allowed. You may use a scientific calculator and one $8 \frac{1}{2} \times 11$ sheet of handwritten notes.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.
$\mathbf{1}$ (11 points total) All the parts of this problem concern the vector function $\mathbf{r}(t)$ that satisfies the following conditions: the acceleration is $\quad \mathbf{a}(t)=6 t \mathbf{i}+\mathbf{j}-12 t^{2} \mathbf{k}$
and the initial position and velocity are given by $\quad \mathbf{r}(0)=2 \mathbf{k}$ and $\mathbf{v}(0)=\mathbf{i}+\mathbf{j}$.
(a) (4 points) Find the vector function $\mathbf{r}(t)$.
(b) (3 points) Write an equation of the normal plane to the curve described by $\mathbf{r}(t)$ at the point where $t=0$.
(c) (4 points) Compute the curvature of the curve described by $\mathbf{r}(t)$ at $t=0$.
$\mathbf{2}$ (9 points) Find the tangent plane to the surface given by the graph of

$$
f(x, y)=\sqrt{22-x^{2}-2 y^{2}}
$$

at $(2,1)$. Use the linear approximation to estimate $f(1.98,0.96)$.

3 (10 points) Find three positive numbers x, y, and z whose sum is 12 and for which the product

$$
x y z^{2}
$$

is a maximum.

4 (10 points total)
(a) (4 points) Change the order of integration in the following integral:

$$
\int_{0}^{2} \int_{y / 2}^{1} x^{2} \sin (x y) d x d y
$$

(b) (6 points) Evaluate the integral.
$\mathbf{5}$ (10 points) Find the volume of the solid between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ in the first octant, bounded above by $z=x+y$ and below by $z=0$.

