Your Name

Student ID \#

Your TA's name

Your Quiz Section Label and Time

Problem	Possible	Points
1	12	
2	12	
3	12	
4	14	
Total	50	

- No books allowed. You may use a scientific calculator and one $8 \frac{1}{2} \times 11$ sheet of handwritten notes.
- Even if you have a calculator, give me exact answers.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.

1 (12 points total) Consider the curve given by the vector equation

$$
\vec{r}(t)=\langle\sin (2 t), t, \cos (2 t)\rangle .
$$

(a) (6 points) Verify that the point $P(0, \pi / 2,-1)$ lies on the curve, and find the equation of the normal plane to the curve at P.
(b) (6 points) Find the curvature of the curve at all points (it may depend on t).

2 (12 points total)
(a) (6 points) Verify that the point $P(1,2,2)$ lies on the surface $z=f(x, y)=\sqrt{1-x^{3}+y^{2}}$, and find the equation of the tangent plane to this surface at P.
(b) (6 points) Use linear approximation for $f(x, y)$ based at $(1,2,2)$ to estimate the number $\sqrt{1-(0.96)^{3}+(2.02)^{2}}$.

3 (12 points) Find the points of local maximum and minimum and saddle points for the function

$$
f(x, y)=x^{2}+2 x y^{2}-4 x y
$$

4 (14 points total)
(a) (7 points) Evaluate the following integral (you may want to reverse the order of integration):

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^{2}}}{x^{3}} d x d y
$$

(b) (7 points) Convert the following integral to polar coordinates (do not attempt to evaluate!):

$$
\int_{1}^{\sqrt{2}} \int_{\sqrt{2-x^{2}}}^{x} f(x, y) d y d x
$$

