NAME:

STUDENT ID \#:

SIGNATURE:

TA SECTION:
\square

Problem	Number of points	Points obtained
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Instructions:

- Your exam consists of FIVE problems. Please check that you have all four of them.
- No books or notebooks allowed; you may use an A4 double-sided, handwritten sheet of notes for personal use (do not share).
- Place a box around your final answer to each question.
- No graphing calculators allowed (scientific calculators OK).
- Answers with little or no justification may receive no credit.
- Answers obtained by guess-and-check work will receive little or no credit, even if correct.
- Read problems carefully.
- Raise your hand if you have a question.
- If you need more space, use additional blank sheets which will be provided by your TA. It is your responsibility to have him/her staple the additional sheets to your exam before you turn it in.
- Please turn off cell phones. GOOD LUCK!

Problem 1. (10 pts.) Find the double integral of the function $f(x, y)=x y$ over the triangle with vertices $(0,0),(1,0)$, and $(1,1)$.

Solution. We get

$$
\iint f d A=\int_{0}^{1} \int_{0}^{x} x y d y d x=\frac{1}{2} \int_{0}^{1} x^{3} d x=\frac{1}{8}
$$

Problem 2. (10 pts) Find equation of the tangent plane of the function $f(x, y)=\ln (x-3 y)$ at $(7,2)$. Use it to approximate $f(6.9,2.02)$.

Solution. Let $x_{0}=7, y_{0}=2$, and $z_{0}=0$. Also

$$
f_{x}(7,2)=\frac{1}{x_{0}-3 y_{0}}=1, \quad f_{y}(7,2)=\frac{-3}{x_{0}-3 y_{0}}=-3 .
$$

Thus the tangent plane is given by

$$
z=(x-7)-3(y-2)=x-3 y-1 .
$$

Moreover

$$
f(6.9,2.02) \approx 0+1(6.9-7)-3(2.02-2)=-.1-.06=-.16
$$

Problem 3. (10 pts) Answer the following questions.
(i) At what point on the curve $x=t^{3}, y=3 t, z=t^{4}$ is the normal plane parallel to the plane $6 x+6 y-8 z=1$?

Solution. Let $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$. We want to find t such that $\mathbf{r}^{\prime}(t)$ is a parallel to the normal vector of the given plane, i.e., $\langle 6,6,-8\rangle$. Now $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}, 3,4 t^{3}\right\rangle$. Thus, $t=-1$ is the only solution. Hence the point is $(-1,-3,1)$.
(ii) Suppose the location of a particle at time t is given by the curve $\mathbf{r}(t)=\left\langle t, t^{2}, t\right\rangle$. At what point on its trajectory is the normal component of its acceleration maximum?

We know

$$
a_{N}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|} .
$$

We see

$$
\mathbf{r}^{\prime}(t)=\langle 1,2 t, 1\rangle, \mathbf{r}^{\prime \prime}(t)=\langle 0,2,0\rangle, \mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\langle-2,0,2\rangle .
$$

Thus

$$
a_{N}=\frac{\sqrt{8}}{\sqrt{2+4 t^{2}}} .
$$

This is maximum at $t=0$, i.e., at $(0,0,0)$.

Problem 4. (10 pts) Find the absolute maximum and minimum values of the function $f(x, y)=$ $x+y$ in the domain $D=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4\right\}$.

Solution. First find critical points inside the domain by solving

$$
\frac{\partial f}{\partial x}=0, \quad \frac{\partial f}{\partial y}=0 .
$$

There is no solution. So we move to the boundary. There is an outer and an inner circular boundary.
The inner boundary can be parametrized by $(\cos t, \sin t), 0 \leq t<2 \pi$. The function is now

$$
f(t)=\cos (t)+\sin (t), \quad f^{\prime}(t)=-\sin (t)+\cos (t)=0 \Rightarrow t=\frac{\pi}{4}, \text { or, } \frac{5 \pi}{4} .
$$

We evaluate $f(\pi / 4)=\sqrt{2}, f(5 \pi / 4)=-\sqrt{2}$.
The outer boundary can be parametrized by $(2 \cos t, 2 \sin t), 0 \leq t<2 \pi$. Here

$$
f(t)=2 \sin (t)+2 \cos (t), \quad f^{\prime}(t)=2 \sin (t)-2 \cos (t)=0 .
$$

The same solution gives us $f(\pi / 4)=2 \sqrt{2}, f(5 \pi / 4)=-2 \sqrt{2}$.
Thus the absolute maximum is $2 \sqrt{2}$ and the absolute minimum is $-2 \sqrt{2}$.

Problem 5. (10 pts) Use polar coordinates to find the volume of the solid that is inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $x^{2}+y^{2}=4$.
Solution. The volume between the two bodies is

$$
I=2\left[\iint_{x^{2}+y^{2} \leq 16} \sqrt{16-x^{2}-y^{2}} d A-\iint_{x^{2}+y^{2} \leq 4} \sqrt{16-x^{2}-y^{2}}\right]
$$

Using polar coordinates

$$
\begin{aligned}
I / 2 & =\int_{0}^{2 \pi} \int_{0}^{4} r \sqrt{16-r^{2}} d r d \theta-\int_{0}^{2 \pi} \int_{0}^{2} r \sqrt{16-r^{2}} d r d \theta \\
& =2 \pi\left[-\left.\frac{1}{3}\left(16-r^{2}\right)^{3 / 2}\right|_{2} ^{4}\right]=\frac{2 \pi}{3} 12^{3 / 2} .
\end{aligned}
$$

Thus $I=4 \pi 12^{3 / 2} / 3$.

