MATH 126 D
Exam II
November 22, 2011

Name \qquad
Student ID \#
Section \qquad

HONOR STATEMENT
"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."
\qquad

1	12	
2	13	
3	12	
4	12	
Total	50	

- Your exam should consist of this cover sheet, followed by 4 problems. Check that you have a complete exam.
- Show all work and justify your answers.
- Unless otherwise indicated, your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854 .)
- You may use a scientific calculator and one 8.5×11-inch sheet of handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- The use of headphones or earbuds during the exam is not permitted.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Turn your cell phone OFF and put it AWAY for the duration of the exam.

1. (12 points) Let $\vec{r}(t)=\langle\sin 3 t, \ln (\sin 3 t), \cos 3 t\rangle$ for $0<t<\frac{\pi}{3}$.
(a) Find the unit tangent, unit normal, and binormal vectors at $t=\frac{\pi}{6}$.

ANSWERS:

$$
\vec{T}\left(\frac{\pi}{6}\right)=\quad \vec{N}\left(\frac{\pi}{6}\right)=\quad \vec{B}\left(\frac{\pi}{6}\right)=
$$

\qquad
(b) Give the equation of the normal plane to $\vec{r}(t)$ at $t=\frac{\pi}{6}$.
2. (13 points) Find the point(s) on the surface $x^{2}=12+y z$ closest to the point $(0,1,3)$. For full credit you must show some work OR write a sentence or two to explain how you know that your answer gives the minimal distance.
3. (12 points)
(a) Calculate the iterated integral.

$$
\int_{0}^{4} \int_{0}^{2} x y \sqrt{x^{2}+1} d x d y
$$

(b) Sketch the region of integration and change the order of integration.

$$
\int_{0}^{10} \int_{0}^{x^{2}+1} h(x, y) d y d x
$$

4. (12 points) Compute the area of the region to the right of the y-axis, outside the circle $r=\sin (\theta)$, and inside the cardiod $r=1+\sin (\theta)$.

