## Exam II Answers

Math 126 B \& C Autumn 2013

1. (a) $z=\frac{1}{3}(x-2)-\frac{8}{3}(y-1)+2$
(b) $f(2.03,0.97) \approx 2.09$
2. (a) $\mathbf{v}(t)=\left\langle 2,2 t, t^{-1 / 2}\right\rangle, \mathbf{a}(t)=\left\langle 0,2,-\frac{1}{2} t^{-3 / 2}\right\rangle$
(b) HINT: We know that $\mathbf{a}(t)=a_{N} \mathbf{N}(t)+a_{T} \mathbf{T}(t)$. If acceleration is parallel to the unit normal vector, the tangential component of acceleration must be equal to 0 . In particular, since $a_{T}=\frac{\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime}\right|}$, we seek the point(s) at which $\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime \prime}=0$.
ANSWER: $\left(0, \frac{1}{4}, \frac{2}{\sqrt{2}}\right)$
(c) i. $\left(-\frac{1}{2}, 0\right)$
ii. HINT: Apply the second derivative test: $D\left(-\frac{1}{2}, 0\right)=-2 c$. If the critical point gives a saddle point, then $-2 c$ must be negative.
ANSWER: $c>0$
(d) HINT: Here is the region over which you're integrating:


ANSWER: $\int_{0}^{\pi / 2} \int_{-\cos x}^{\cos x} e^{\sin x} d y d x=2(e-1)$
(e) HINT: The depth of the pool is a linear function of $x$. At $x=-15$, the depth is 3 , and at $x=15$, the depth is 15 . Find the equation for the depth in terms of $x$-you want the integral that gives the volume "under" that depth function over the peanut-shaped region.
$V=\int_{0}^{2 \pi} \int_{0}^{10+5 \cos (2 \theta)}\left(\frac{2}{5} r \cos (\theta)+9\right) r d r d \theta$

