Your Name
\square

Your Signature
\square
Student ID \#

	Hanchao		Avi	
Section	$12: 30$	$1: 30$	$12: 30$	$1: 30$
(circle one)	EA	EB	EC	ED

Problem	Total Points	Score
1	8	
2	8	
3	9	
4	16	
5	9	
Total	50	

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed. Turn off your cell phone.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- If you use a trial and error (or guess and check) method when a calculus method is available, you will not receive full credit.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (8 points) The position of a particle is given by $\mathbf{r}(t)=4 t \mathbf{i}+2 t^{2} \mathbf{j}+\ln t \mathbf{k}$. Find all points on the path where the velocity is perpendicular to the acceleration.

2 (8 points) Calculate the equation of the tangent plane to the hyperboloid $3 x^{2}+5 y^{2}-z^{2}=8$ at the point $(2,-1,3)$

3 (9 points) Find the absolute minimum of the function $f(x, y)=y^{2}-x y+x$ on the triangular region in the first quadrant where $x+y \leq 7$.

4 (16 points) Evaluate the following double integrals. Give your answers in exact form.
(a) (8 points) $\int_{0}^{2} \int_{x^{2}}^{4} x^{5} e^{y^{2}} d y d x$
(b) (8 points) $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} 4 x^{2}+5 y^{3}+4 y^{2} d y d x$

5 (9 points) Clovis must calculate the area of a triangular field. He measures edge a to be 150 ft and edge \mathbf{b} to be 200 ft . He measures angle \mathbf{C} to be 60°. The error in his edge measurements is half a foot. His angle measurement has an error of 2°. Use a linear approximation to estimate the maximum error in his area calculation.
(Recall that the area of a triangle is given by $\frac{1}{2} a b \sin \theta$.)

