1 (8 points) The position of a particle is given by $\mathbf{r}(t)=4 t \mathbf{i}+2 t^{2} \mathbf{j}+\ln t \mathbf{k}$. Find all points on the path where the velocity is perpendicular to the acceleration.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =4 \mathbf{i}+4 t \mathbf{j}+\frac{1}{t} \mathbf{k} \\
\mathbf{r}^{\prime \prime}(t) & =4 \mathbf{j}-\frac{1}{t^{2}} \mathbf{k} \\
0 & =\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t) \\
& =16 t-\frac{1}{t^{3}} \\
0 & =16 t^{4}-1 \\
t & = \pm \frac{1}{2}
\end{aligned}
$$

But $t=-\frac{1}{2}$ is not in the domain of the function.
Thus the only point is $\mathbf{r}^{\prime}\left(\frac{1}{2}\right)=\left\langle 2, \frac{1}{2},-\ln 2\right\rangle$.

2 (8 points) Calculate the equation of the tangent plane to the hyperboloid $3 x^{2}+5 y^{2}-z^{2}=8$ at the point $(2,-1,3)$.

At the point $(2,-1,3), z$ is positive so we can write $z=\sqrt{3 x^{2}+5 y^{2}-8}$.
$\frac{\partial z}{\partial x}=\left.\frac{3 x}{\sqrt{3 x^{2}+5 y^{2}-8}}\right|_{(2,-1)}=2$
$\frac{\partial z}{\partial y}=\left.\frac{5 y}{\sqrt{3 x^{2}+5 y^{2}-8}}\right|_{(2,-1)}=-\frac{5}{3}$
The tangent plane is
$z-3=2(x-2)-\frac{5}{3}(y+1)$
or
$6 x-5 y-3 z=8$

3 (9 points) Find the absolute minimum of the function $f(x, y)=y^{2}-x y+x$ on the triangular region in the first quadrant where $x+y \leq 7$.

First calculate the critical points in the region.
$f_{x}(x, y)=-y+1$ so if $f_{x}(x, y)=0$ then $y=1$.
$f_{y}(x, y)=2 y-x$ so if $f_{y}(x, y)=0$ and $y=1$ then $x=2$.
The only critical point is $(2,1)$.
Now consider the boundary. It consists of 3 pieces.

1. $x=0$ and $0 \leq y \leq 7$

Here $f(x, y)$ restricted to the boundary is y^{2}. This is increasing, so the minimum is at $y=0$.
2. $y=0$ and $0 \leq x \leq 7$

Here $f(x, y)$ restricted to the boundary is x. This is increasing, so the minimum is at $x=0$.
3. $x=7-y$ and $0 \leq y \leq 7$

Here $f(x, y)$ restricted to the boundary is $2 y^{2}-8 y+7$.
Check for critical values in the interval: $4 y-8=0$ so $y=2$ (and $x=7-y=5$).
This is an upward opening parabola, so the minimum is at the critical point.
Thus we need to compute 3 values of $f(x, y)$:
$f(2,1)=1$
$f(0,0)=0$
$f(5,2)=-1$
The minimum value of $f(x, y)$ on the region is -1 .
It occurs on the boundary at the point $(5,2)$.
(16 points) Evaluate the following double integrals. Give your answers in exact form.
(a) (8 points) $\int_{0}^{2} \int_{x^{2}}^{4} x^{5} e^{y^{2}} d y d x$

We first need to reverse the order of integration.

$$
\begin{aligned}
\int_{0}^{4} \int_{0}^{\sqrt{y}} x^{5} e^{y^{2}} d x d y & =\left.\int_{0}^{4} \frac{1}{6} x^{6} e^{y^{2}}\right|_{x=0} ^{\sqrt{y}} d y \\
& =\int_{0}^{4} \frac{1}{6} y^{3} e^{y^{2}} d y \quad \text { let } u=y^{2} \text { and } d u=2 y d y \\
& =\int_{0}^{16} \frac{1}{12} u e^{u} d u \\
& =\left.\frac{1}{12}\left(u e^{u}-e^{u}\right)\right|_{0} ^{16} \quad \text { Integration by Parts or Guess and Check } \\
& =\frac{1}{12}\left(15 e^{16}+1\right)
\end{aligned}
$$

(b) (8 points) $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} 4 x^{2}+5 y^{3}+4 y^{2} d y d x$

First convert to polar coordinates.

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{3} 4 r^{3}+5 r^{4} \sin ^{3} \theta d r d \theta & =\int_{0}^{\pi} r^{4}+\left.r^{5} \sin ^{3} \theta\right|_{r=0} ^{3} d \theta \\
& =\int_{0}^{\pi} 81+243 \sin ^{3} \theta d \theta \\
& =81 \pi+\int_{0}^{\pi} 243\left(1-\cos ^{2} \theta\right) \sin \theta d \theta \quad \text { let } u=\cos \theta \\
& =81 \pi+\int_{1}^{-1}-243\left(1-u^{2}\right) d u \\
& =81 \pi+243 \int_{-1}^{1}\left(1-u^{2}\right) d u \\
& =81 \pi+\left.243\left(u-u^{3} / 3\right)\right|_{-1} ^{1} \\
& =81 \pi+324
\end{aligned}
$$

5 (9 points) Clovis must calculate the area of a triangular field. He measures edge a to be 150 ft and edge \mathbf{b} to be 200 ft . He measures angle \mathbf{C} to be 60°. The error in his edge measurements is half a foot. His angle measurement has an error of 2°.
Use a linear approximation to estimate the maximum error in his area calculation.
(Recall that the area of a triangle is given by $\frac{1}{2} a b \sin \theta$.)

Recall that you must use radian measure if you are going to use calculus on trigonometric functions.
Thus we have
$a=150$
$b=200$
$\Delta a=\Delta b=\frac{1}{2}$
$C=\frac{\pi}{3}$
$\Delta C=\frac{\pi}{90}$
Let A be the area of the triangle. Then $A=\frac{1}{2} a b \sin \theta$
$\frac{\partial A}{\partial a}=\left.\frac{1}{2} b \sin \theta\right|_{(150,200, \pi / 3)}=50 \sqrt{3}$
$\frac{\partial A}{\partial b}=\left.\frac{1}{2} a \sin \theta\right|_{(150,200, \pi / 3)}=\frac{75 \sqrt{3}}{2}$
$\frac{\partial A}{\partial C}=\left.\frac{1}{2} a b \cos \theta\right|_{(150,200, \pi / 3)}=7500$
Using the linearization $\Delta A \approx \frac{\partial A}{\partial a} \Delta a+\frac{\partial A}{\partial b} \Delta b+\frac{\partial A}{\partial C} \Delta C$ gives

$$
\begin{aligned}
\Delta A & \approx 50 \sqrt{3} \cdot \frac{1}{2}+\frac{75 \sqrt{3}}{2} \cdot \frac{1}{2}+7500 \cdot \frac{\pi}{90} \\
& =\frac{175}{4} \sqrt{3}+\frac{250}{3} \pi \\
& \approx 337.6 \text { square feet }
\end{aligned}
$$

