Math 126 G - Autumn 2017 Midterm Exam Number Two November 16, 2017

${ }_{\text {Nome }}$ Saul Uxin Student ID no. : hey, thais private! Signature: rooosoror

1	9	9
2	10	10
3	9	9
4	16	16
5	16	16
Total	60	60

- This exam consists of FIVE problems on SIX pages, including this cover sheet.
- Show all work for full credit. Show no work for zero credit.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- Write all of your work on the exam itself. If you use the back of the page, please indicate that you have done so!
- You may use a TI-30X IIS on this exam. No other electronic devices are allowed.
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 50 minutes to complete the exam.

1. [3 points per part] Suppose $\mathbf{r}(t)=\langle 0, y(t), z(t)\rangle$ for some functions $y(t), z(t)$.

Here's a picture of the space curve of $\mathbf{r}(t)$ in the $y z$-plane.

(a) Compute \mathbf{T}, \mathbf{N}, and \mathbf{B} at the point $(0,1,-3)$.
$\vec{T}=\langle 0,-1,0\rangle$, the direction the curve is pointing.
$\vec{N}=\langle 0,0,1\rangle$, the direction its using.
$\vec{B}=\vec{T} \times \vec{N}=\langle-1,0,0\rangle$
(b) Find another point on the graph where \mathbf{B} exists, but is different from the vector you found in part (a).
\vec{B} will be $\langle 1,0,0\rangle$ when the curve
turns the other way (counter-clockwise), e.g. @ $(0,1,2)$.
(c) Estimate the curvature at the point $(0,4,3)$.
(You don't have to be very accurate, but you should show your reasoning.)
$K=\frac{1}{R^{2}}$ radius of a circle that firs along the curve.
$R \approx \frac{1}{3}$, so $k \approx 3$
2. [10 points] Consider the surface

$$
z=f(x, y)=y \arctan (x)+x y^{2} e^{y}
$$

Find the equation of the plane tangent to this surface at the point $(1,4, f(1,4))$.

$$
\begin{aligned}
& \text { We need } f(1,4), f_{x}(1,4) \text { and } f_{y}(1,4): \\
& f(1,4)=4 \arctan (1)+16 e^{4}=\pi+16 e^{4} \\
& f_{x}(x, y)=\frac{y}{1+x^{2}}+y^{2} e^{y} \\
& \longrightarrow f_{x}(1,4)=2+16 e^{4} \\
& f_{y}(x, y)=\arctan (x)+2 x y e^{y}+x y^{2} e^{y} \\
& \longrightarrow f_{y}(1,4)=\frac{\pi}{4}+24 e^{4}
\end{aligned}
$$

Tangent plane:

$$
z=f(1,4)+f_{x}(1,4)(x-1)+f_{y}(1,4)(y-4)
$$

$$
z=\pi+16 e^{y}+\left(2+16 e^{4}\right)(x-1)+\left(\frac{\pi}{4}+24 e^{4}\right)(y-4)
$$

3. [9 points] Below are the level curves of the partial derivatives of a function $f(x, y)$.

(a) Find the critical points of f.

Where $f_{x}=0$ and $f_{y}=0$: at $(2,5)$ and $(8,5)$
(b) Identify each critical point as a local maximum, local minimum, or saddlepoint.
$A_{+}(2,5): f_{x}$ increases in the x-direction $\left.\rightarrow f_{x x}>0\right\} D=f_{x x} f_{y y}\left[f_{x y}\right]^{2}>0$ f_{x} is constant in the y-direction $\longrightarrow f_{x y}=0 ; j D=f_{x x} f_{y y}-[t x y]>0$ f_{y} increases in the y-direction $\longrightarrow f_{y y}>0$

$\begin{aligned} & \text { Similarly, at }(8,5): f_{x x} \\ &<0 \\ & f_{x y}=0 \\ & f_{y y}>0\end{aligned}$
4. [16 points] Consider the function $f(x, y)=x+x y-3 y^{2}$.

Find the maximum and minimum values of $f(x, y)$ on the triangle D pictured below:

Critical points: $\begin{aligned} f_{x}(x, y) & =1+y=0 \ggg \underbrace{y=-1, x=-6}_{\text {not in domain. }} \\ f_{y}(x, y) & =x-6 y=0\end{aligned}$
Boundary:
Vertices $(0,0)](1,0)](1,1)$
Bottom: $y=0, f(x, 0)=x$, no interior extrema.
Right: $x=1 f(1, y)=1+y \underset{\downarrow \frac{d}{d y}}{ }-3 y^{2}$

$$
1-6 y=0 \rightarrow y=\frac{1}{6} \rightarrow\left(1, \frac{1}{6}\right)
$$

Upperlefr: $y=x, f(x x)=x+x^{2}-3 x^{2}$

$$
1-4 x \rightarrow x=\frac{1}{4} \rightarrow\left(\frac{1}{4}, \frac{1}{4}\right)
$$

Check:

$$
\begin{aligned}
& f(0,0)=0 \\
& f(1,0)=1 \\
& f(1,1)=-1 \longleftarrow \text { min } \\
& f\left(1, \frac{1}{6}\right)=\frac{13}{12} \longleftarrow_{\text {max }} \\
& f\left(\frac{1}{4}, \frac{1}{4}\right)=\frac{1}{8}
\end{aligned}
$$

5. [8 points per part] For each f and D shown below, compute $\iint_{D} f(x, y) d A$.
(a) $f(x, y)=x^{5} \sin \left(x^{3} y\right)$
D is the rectangle $[1,2] \times[0,3]$.
(b) $f(x, y)=y$
D is the region bounded by $y=4, y=\ln (x)$, and $y=x-1$.

$$
\left.\int_{0}^{4} \int_{y+1}^{e^{y}} y d x d y=\int_{0}^{4}(x y)\right]_{x=y+1}^{x=e^{y}} d y
$$

$$
\left.=\int_{0}^{4}\left(y e^{y}-y^{2}-y\right) d y=\int_{0}^{4} y e^{y} d y-\left(\frac{1}{3} y^{3}+\frac{1}{2} y^{2}\right)\right]_{0}^{4}
$$

$$
u^{0}=y \quad d v=e^{y} d y
$$

$$
d u=d y \quad v=e^{y}
$$

$$
\left.=y y^{9^{4}}\right]_{0}^{4}-\int_{0}^{4} e^{4}+y-\left(\frac{64}{3}+8\right)=4 e^{4}-\left(e^{4}-1-\frac{18}{3}-\frac{88}{3}=3 e^{4}-\frac{85}{3}\right.
$$

$$
\begin{aligned}
& \left.\int_{1}^{2} \int_{0}^{2} x^{5} \sin \left(x^{3} y\right) d y d x=x^{3} y \quad \int_{1}^{2} x^{2} \sin (u) d u d x=\int_{1}^{3 x^{3}}\left(-x^{2} \cos (u)\right)\right]_{u=0}^{2} d x \\
& \begin{array}{c}
u=x^{3} y \\
d u=x^{3} d y
\end{array} \\
& =\int_{1}^{2}\left(-x^{2} \cos \left(3 x^{3}\right)+x^{2}\right) d x=\int_{1}^{2}-x^{2} \cos \left(3 x^{3}\right) d x+\left(\frac{1}{3} x^{3}\right) x_{1}^{2} \\
& =\frac{-1}{9} \int_{3}^{24} \cos (n) d n+\left(\frac{8}{3}-\frac{1}{3}\right) \\
& =\frac{-1}{9}(\sin (u))_{3}^{24}+\frac{7}{3}=\frac{-1}{9}(\sin (24)-\sin (3))+\frac{7}{3}
\end{aligned}
$$

