Math 126 D - Spring 2011
 Mid-Term Exam Number Two

May 17, 2011
Answers

1. There are three critical points: $(0,0)$, which is a local minimum, and $(\pm \sqrt{2},-1)$ which are both saddle points.
2. The tangent plane is $z=(e+1) x-1$.
3. The optimum box should have a square base with sides of length $\frac{2}{\sqrt[3]{5}}$ meters, and height $\frac{5^{2 / 3}}{2}$ meters.
4. (a) $e^{2}-e$ (b) $-\frac{1}{6} \cos 64+\frac{1}{6}$
5.

$$
\iint_{D} x y d A=\int_{\pi / 4}^{\pi / 2} \int_{1}^{2} r^{3} \cos \theta \sin \theta d r d \theta=\frac{15}{16}
$$

