Your Name
\square

Your Signature
\square
Student ID \#

	Ru Yu		Chris	
Section	$1: 30$	$2: 30$	$1: 30$	$2: 30$
(circle one)	FA	FB	FC	FD

Problem	Total Points	Score
1	16	
2	9	
3	8	
4	8	
5	9	
Total	50	

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- If you use a trial and error (or guess and check) method when a calculus method is available, you will not receive full credit.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (16 points) Evaluate the following double integrals.
(a) (8 points) $\iint_{R} x \sec ^{2}(x y) d A, \quad R=[0, \pi / 4] \times[0,1]$
(b) (8 points) $\quad \iint_{D} 2 x y d A \quad D$ is the triangle with vertices $(0,0),(1,2)$ and $(0,3)$.

2 (9 points) Find the absolute maximum of the function $f(x, y)=x+2 y-x y$ on the closed rectangular region with vertices $(0,0),(0,2),(3,0)$ and $(3,2)$.

3 (8 points) If three resistors with resistances R_{1}, R_{2} and R_{3} are connected in parallel, then the total resistance R of the circuit is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

Suppose that the resistances are measured in ohms with $R_{1}=25, R_{2}=40$ and $R_{3}=50$, and that there is a possible error of 0.5 ohms in each measurement. Use differentials to estimate the maximum error in the calculated value of R.

4 (8 points) Find all the points on the curve $r=1+\cos \theta$ where the tangent line is horizontal.

5 (9 points) Let $\mathbf{r}(t)=3 t^{2} \mathbf{i}+t^{3} \mathbf{j}+3 t^{2} \mathbf{k}$. Find all times t when the normal component of acceleration is equal to 8 .

