Math 126F S	Second Midterm	Spring 2013
Your Name	Your Signature	
Student ID #	Ru Yu	
	Section 1:30 2: (circle one) FA F	

Problem	Total Points	Score
1	16	
2	9	
3	8	
4	8	
5	9	
Total	50	

- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- If you use a trial and error (or guess and check) method when a calculus method is available, you will not receive full credit.
- Place a box around **YOUR FINAL ANSWER** to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Math 126F

1 (16 points) Evaluate the following double integrals.

(a) (8 points) $\iint_R x \sec^2(xy) \, dA, \quad R = [0, \pi/4] \times [0, 1]$

(b) (8 points) $\iint_D 2xy \, dA$ D is the triangle with vertices (0,0), (1,2) and (0,3).

Math 126F

Second Midterm

Spring 2013

2 (9 points) Find the absolute maximum of the function f(x, y) = x + 2y - xy on the closed rectangular region with vertices (0, 0), (0, 2), (3, 0) and (3, 2).

Second Midterm

3 (8 points) If three resistors with resistances R_1 , R_2 and R_3 are connected in parallel, then the total resistance R of the circuit is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Suppose that the resistances are measured in ohms with $R_1 = 25$, $R_2 = 40$ and $R_3 = 50$, and that there is a possible error of 0.5 ohms in each measurement. Use differentials to estimate the maximum error in the calculated value of R.

4 (8 points) Find all the points on the curve $r = 1 + \cos \theta$ where the tangent line is horizontal.

Math 126F

5 (9 points) Let $\mathbf{r}(t) = 3t^2 \mathbf{i} + t^3 \mathbf{j} + 3t^2 \mathbf{k}$. Find all times t when the normal component of acceleration is equal to 8.