1 (16 points) Evaluate the following double integrals.
(a) (8 points) $\iint_{R} x \sec ^{2}(x y) d A, \quad R=[0, \pi / 4] \times[0,1]$

$$
\begin{aligned}
\int_{0}^{\pi / 4} \int_{0}^{1} x \sec ^{2}(x y) d y d x & =\left.\int_{0}^{\pi / 4} \tan (x y)\right|_{y=0} ^{1} d x \\
& =\int_{0}^{\pi / 4} \tan (x) d x \\
& =\left.\ln (\sec (x))\right|_{0} ^{\pi / 4} \\
& =\ln \sqrt{2}
\end{aligned}
$$

(b) (8 points) $\quad \iint_{D} 2 x y d A \quad D$ is the triangle with vertices $(0,0),(1,2)$ and $(0,3)$.

$$
\begin{aligned}
\int_{0}^{1} \int_{2 x}^{3-x} 2 x y d y d x & =\left.\int_{0}^{1} x y^{2}\right|_{2 x} ^{3-x} d x \\
& =\int_{0}^{1} 9 x-6 x^{2}-3 x^{3} d x \\
& =\frac{9}{2} x^{2}-2 x^{3}-\left.\frac{3}{4} x^{4}\right|_{0} ^{1} \\
& =\frac{7}{4}
\end{aligned}
$$

2 (9 points) Find the absolute maximum of the function $f(x, y)=x+2 y-x y$ on the closed rectangular region with vertices $(0,0),(0,2),(3,0)$ and $(3,2)$.

First find the critical points.
$f_{x}(x, y)=1-y=0$ gives $y=1$
$f_{y}(x, y)=2-x=0$ gives $x=2$.
There is one critical point at $(2,1) . f(2,1)=2$.
Now find the maximum of $f(x, y)$ on the boundary. There are four parts to this.
I. $x=0,0 \leq y \leq 2$
$f(0, y)=2 y$ is increasing so the maximum is $f(0,2)=4$.
II. $y=0,0 \leq x \leq 3$
$f(x, 0)=x$ is increasing so the maximum is $f(3,0)=3$.
III. $x=3,0 \leq y \leq 2$
$f(3, y)=3-y$ is decreasing so the maximum is $f(3,0)=3$.
IV. $y=2,0 \leq x \leq 3$
$f(x, 2)=4-x$ is decreasing so the maximum is $f(0,2)=4$.
Thus the maximum value of the function on this rectangle is $f(0,2)=4$.

3 (8 points) If three resistors with resistances R_{1}, R_{2} and R_{3} are connected in parallel, then the total resistance R of the circuit is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

Suppose that the resistances are measured in ohms with $R_{1}=25, R_{2}=40$ and $R_{3}=50$, and that there is a possible error of 0.5 ohms in each measurement. Use differentials to estimate the maximum error in the calculated value of R.

$$
\begin{array}{rlrl}
\frac{1}{R}=\frac{1}{25}+\frac{1}{40}+\frac{1}{50} & \text { so } R & =\frac{200}{17} \\
-\frac{1}{R^{2}} \cdot \frac{\partial R}{\partial R_{1}}=-\frac{1}{R_{1}^{2}} & & -\left(\frac{17}{200}\right)^{2} \cdot \frac{\partial R}{\partial R_{1}}=-\frac{1}{25^{2}} \quad \frac{\partial R}{\partial R_{1}}=\frac{64}{289} \\
-\frac{1}{R^{2}} \cdot \frac{\partial R}{\partial R_{2}}=-\frac{1}{R_{2}^{2}} & & -\left(\frac{17}{200}\right)^{2} \cdot \frac{\partial R}{\partial R_{2}}=-\frac{1}{40^{2}} \quad \frac{\partial R}{\partial R_{2}}=\frac{25}{289} \\
-\frac{1}{R^{2}} \cdot \frac{\partial R}{\partial R_{3}}=-\frac{1}{R_{3}^{2}} & & -\left(\frac{17}{200}\right)^{2} \cdot \frac{\partial R}{\partial R_{3}}=-\frac{1}{50^{2}} \quad \frac{\partial R}{\partial R_{3}}=\frac{16}{289} \\
d R & =\frac{\partial R}{\partial R_{1}} \cdot d R_{1}+\frac{\partial R}{\partial R_{2}} \cdot d R_{2}+\frac{\partial R}{\partial R_{3}} \cdot d R_{3} \\
& =\frac{64}{289} \cdot 0.5+\frac{25}{289} \cdot 0.5+\frac{16}{289} \cdot 0.5 \\
& =\frac{105}{578} \\
& \approx 0.18
\end{array}
$$

4 (8 points) Find all the points on the curve $r=1+\cos \theta$ where the tangent line is horizontal.

We wish to find the points where $\frac{d y}{d \theta}=0$
$y=r \sin \theta=(1+\cos \theta)(\sin \theta)=\sin \theta+\cos \theta \sin \theta$

$$
\begin{aligned}
\frac{d x}{d \theta} & =\cos \theta-\sin ^{2} \theta+\cos ^{2} \theta \\
& =\cos \theta-\left(1-\cos ^{2} \theta\right)+\cos ^{2} \theta \\
& =2 \cos ^{2} \theta+\cos \theta-1 \\
& =(2 \cos \theta-1)(\cos \theta+1)
\end{aligned}
$$

Thus $\cos \theta=-1, \frac{1}{2}$ and $\theta=\pi, \pm \frac{\pi}{3}$.
In polar coordinates, the points are $(0, \pi),(3 / 2, \pi / 3)$ and $(3 / 2,-\pi / 3)$

5 (9 points) Let $\mathbf{r}(t)=3 t^{2} \mathbf{i}+t^{3} \mathbf{j}+3 t^{2} \mathbf{k}$. Find all times t when the normal component of acceleration is equal to 8 .

We must solve $\frac{\left|r^{\prime} \times r^{\prime \prime}\right|}{\left|r^{\prime}\right|}=8 \quad$ or $\quad\left|r^{\prime} \times r^{\prime \prime}\right|=8\left|r^{\prime}\right| \quad$ for t.
$r^{\prime}(t)=\left\langle 6 t, 3 t^{3}, 6 t\right\rangle$
$r^{\prime \prime}(t)=\langle 6,6 t, 6\rangle$
$r^{\prime} \times r^{\prime \prime}=\left\langle-18 t^{2}, 0,18 t^{2}\right\rangle=18 t^{2}\langle-1,0,1\rangle$
$\left|r^{\prime} \times r^{\prime \prime}\right|=18 t^{2} \sqrt{2}$
$\left|r^{\prime}(t)\right|=\sqrt{(6 t)^{2}+\left(3 t^{2}\right)^{2}+(6 t)^{2}}=3 t \sqrt{t^{2}+8}$
$18 t^{2} \sqrt{2}=8 \cdot 3 t \sqrt{t^{2}+8} \quad$ (note that at $t=0$ we have $a_{N}=0$.)
$3 \sqrt{2} t=4 \sqrt{t^{2}+8}$
$18 t^{2}=16\left(t^{2}+8\right)$
$t^{2}=64$
The solutions are $t=-8,8$

