Your Name

Your Signature
\square
Student ID \#

Section	10:30	11:30
(circle one)	CA	CB

Problem	Total Points	Score
1	16	
2	9	
3	8	
4	8	
5	9	
Total	50	

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- If you use a trial and error (or guess and check) method when a calculus method is available, you will not receive full credit.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (16 points) Evaluate the following double integrals.
(a) (8 points) $\quad \iint_{R} \frac{x}{1+x y} d A, \quad R=[0,1] \times[0,2]$
(b) (8 points) $\quad \iint_{D} x y^{2} d A, \quad D$ is the triangle with vertices $(0,0),(0,2)$ and $(1,2)$.

2 (9 points) Let $f(x, y)=x^{2}-y^{2}+4 \ln (x y)$. Find all points on the surface where the tangent plane is parallel to the plane $6 x=2 y+z$.

3 (8 points) Compute the equation of the tangent line to the curve $r=1+2 \sin \theta$ at the point where $\theta=\pi / 6$. Give your answer in exact form.

4 (8 points) Let $\mathbf{r}(t)=3 t \mathbf{i}+3 t^{2} \mathbf{j}+2 t^{3} \mathbf{k}$. Calculate the curvature at the time $t=-2$.

5 (9 points) Find the absolute maximum of the function $f(x, y)=(2 x-1) \cos \left(\frac{\pi}{2} y\right)$ on the closed rectangular region with vertices $(0,1),(0,4),(3,1)$ and $(3,4)$.

