Math 126C	6C Second Midterm			Spring 2014
Your Name	Your Signature			
Student ID $\#$				
		Sec (circle	ction 10:30 11 one) CA C	:30 'B
		Γ		
	Problem	Total Points	Score	
				1

1	16	
2	9	
3	8	
4	8	
5	9	
Total	50	

- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- If you use a trial and error (or guess and check) method when a calculus method is available, you will not receive full credit.
- Place a box around **YOUR FINAL ANSWER** to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (16 points)

ts) Evaluate the following double integrals.

(a) (8 points)
$$\iint_R \frac{x}{1+xy} dA, \quad R = [0,1] \times [0,2]$$

(b) (8 points) $\iint_D xy^2 dA$, D is the triangle with vertices (0,0), (0,2) and (1,2).

Second Midterm

2 (9 points) Let $f(x, y) = x^2 - y^2 + 4 \ln(xy)$. Find all points on the surface where the tangent plane is parallel to the plane 6x = 2y + z.

3 (8 points) Compute the equation of the tangent line to the curve $r = 1 + 2\sin\theta$ at the point where $\theta = \pi/6$. Give your answer in exact form.

4 (8 points) Let $\mathbf{r}(t) = 3t \mathbf{i} + 3t^2 \mathbf{j} + 2t^3 \mathbf{k}$. Calculate the curvature at the time t = -2.

Second Midterm

Spring 2014

5 (9 points) Find the absolute maximum of the function $f(x, y) = (2x - 1) \cos\left(\frac{\pi}{2}y\right)$ on the closed rectangular region with vertices (0, 1), (0, 4), (3, 1) and (3, 4).