(16 points) Evaluate the following double integrals.
(a) (8 points) $\quad \iint_{R} \frac{x}{1+x y} d A, \quad R=[0,1] \times[0,2]$

$$
\begin{aligned}
\iint_{R} \frac{x}{1+x y} d A & =\int_{0}^{1} \int_{0}^{2} \frac{x}{1+x y} d y d x \\
& =\left.\int_{0}^{1} \ln (1+x y)\right|_{0} ^{2} d x \\
& =\int_{0}^{1} \ln (1+2 x) d x \quad(u=\ln (1+2 x), d v=d x) \\
& =\left.x \ln (1+2 x)\right|_{0} ^{1}-\int_{0}^{1} \frac{2 x}{1+2 x} d x \\
& =\ln 3-\left.\left[x-\frac{1}{2} \ln (1+2 x)\right]\right|_{0} ^{1} \\
& =-1+\frac{3}{2} \ln 3
\end{aligned}
$$

(b) (8 points) $\iint_{D} x y^{2} d A, \quad D$ is the triangle with vertices $(0,0),(0,2)$ and $(1,2)$.

$$
\begin{aligned}
\iint_{D} x y^{2} d A & =\int_{0}^{2} \int_{0}^{y / 2} x y^{2} d x d y \\
& =\left.\int_{0}^{2} \frac{1}{2} x^{2} y^{2}\right|_{x=0} ^{y / 2} d y \\
& =\int_{0}^{2} \frac{1}{8} y^{4} d y \\
& =\frac{4}{5}
\end{aligned}
$$

2 (9 points) Let $f(x, y)=x^{2}-y^{2}+4 \ln (x y)$. Find all points on the surface where the tangent plane is parallel to the plane $6 x=2 y+z$.

The normal vector to $6 x=2 y+z$ is $\langle 6,-2,-1\rangle$.
The normal vector to the tangent plane to $z=f(x, y)$ at the point (x, y) is $\left\langle f_{x}(x, y), f_{y}(x, y),-1\right\rangle$.
Thus we need to solve the equations $f_{x}(x, y)=6$ and $f_{y}(x, y)=-2$ for x and y.
$f_{x}(x, y)=2 x+\frac{4}{x}$ and $f_{y}(x, y)=-2 y+\frac{4}{y}$

$$
\begin{aligned}
-2 y+\frac{4}{y} & =-2 \\
0 & =y^{2}-y-2 \\
& =(y-2)(y+1)
\end{aligned}
$$

$$
2 x+\frac{4}{x}=6
$$

$$
0=x^{2}-3 x+2
$$

$$
=(x-1)(x-2)
$$

We get 4 points: $(2,2),(1,2),(2,-1)$ and $(1,-1)$. But the second 2 are not in the domain of $f(x, y)$.
$f(2,2)=4 \ln 4$ and $f(1,2)=-3+4 \ln 2$
The points are $(1,2,-3+4 \ln 2)$ and $(2,2,4 \ln 4)$.

3 (8 points) Compute the equation of the tangent line to the curve $r=1+2 \sin \theta$ at the point where $\theta=\pi / 6$. Give your answer in exact form.

We need the slope and the $x y$-coordinates of the point.
At $\theta=\pi / 6$ we have $r=2$. Thus $x=r \cos \theta=\sqrt{3}$ and $y=r \sin \theta=1$.

$$
\begin{aligned}
x & =r \cos \theta \\
& =(1+2 \sin \theta) \cos \theta \\
\frac{d x}{d \theta} & =2 \cos ^{2} \theta-(1+2 \sin \theta) \sin \theta \\
& =\frac{1}{2} \quad \text { when you plug in } \theta=\pi / 6 \\
y & =r \sin \theta \\
& =(1+2 \sin \theta) \sin \theta \\
\frac{d y}{d \theta} & =2 \cos \theta \sin \theta+(1+2 \sin \theta) \cos \theta \\
& =\frac{3 \sqrt{3}}{2} \quad \text { when you plug in } \theta=\pi / 6
\end{aligned}
$$

The slope is $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=3 \sqrt{3}$.
The equation of the line is $y-1=3 \sqrt{3}(x-\sqrt{3})$.

4 (8 points) Let $\mathbf{r}(t)=3 t \mathbf{i}+3 t^{2} \mathbf{j}+2 t^{3} \mathbf{k}$. Calculate the curvature at the time $t=-2$.
We use the formula $\kappa=\frac{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}{\left|\mathbf{r}^{\prime}\right|^{3}}$.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left\langle 3,6 t, 6 t^{2}\right\rangle \\
\mathbf{r}^{\prime}(-2) & =\langle 3,-12,24\rangle=3\langle 1,-4,8\rangle \\
\mathbf{r}^{\prime \prime}(t) & =\langle 0,6,12 t\rangle \\
\mathbf{r}^{\prime \prime}(-2) & =\langle 0,6,-24\rangle=6\langle 0,1,-4\rangle \\
\mathbf{r}^{\prime}(-2) \times \mathbf{r}^{\prime \prime}(-2) & =18\langle 8,4,1\rangle \\
\kappa & =\frac{2}{243}
\end{aligned}
$$

5 (9 points) Find the absolute maximum of the function $f(x, y)=(2 x-1) \cos \left(\frac{\pi}{2} y\right)$ on the closed rectangular region with vertices $(0,1),(0,4),(3,1)$ and $(3,4)$.

First find the critical points in the region.
$f_{x}(x, y)=2 \cos \left(\frac{\pi}{2} y\right)=0$ gives $y=1,3$.
$f_{y}(x, y)=-\frac{\pi}{2}(2 x-1) \sin \left(\frac{\pi}{2} y\right)=0$ gives $y=2,4$ or $x=\frac{1}{2}$.
The critical points are $\left(\frac{1}{2}, 1\right)$ and $\left(\frac{1}{2}, 3\right)$. Note that $f(x, y)=0$ at both of these points.
Next consider the four line segments that make up the boundary.
i) $x=0,1 \leq y \leq 4$: Here $f(0, y)=-\cos \left(\frac{\pi}{2} y\right)$. This has a maximum of 1 at $(0,3)$.
ii) $x=3,1 \leq y \leq 4$: Here $f(3, y)=5 \cos \left(\frac{\pi}{2} y\right)$. This has a maximum of 5 at $(3,4)$.
iii) $y=1,0 \leq x \leq 3$: Here $f(x, 1)=0$, a constant. This has a maximum of 0 everywhere.
iv) $y=4,0 \leq x \leq 3$: Here $f(x, 4)=2 x-1$. This has a maximum of 5 at $(3,4)$.

Thus 5 is the maximum value of $f(x, y)$ on the rectangular region.

