Math 126, Section D - Spring 2014
 Midterm II
 May 20, 2014

Name: \qquad
Student ID Number:
Section: DA 11:30-12:20 by Hailun DC 11:30-12:20 by Bo Peter

DB 12:30-1:20 by Hailun
DD 12:30-1:20 by Bo Peter \square

exercise	possible	score
1	14	
2	12	
3	12	
4	12	
total	50	

- Check that this booklet has all the exercises indicated above.
- TURN OFF YOUR CELL PHONE.
- Write your name and your student ID.
- This is a 50 minute test.
- You may use a scientific calculator and one 8.5×11 inch sheet of (twosided) handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Unless otherwise indicated, your answers should be exact instead of decimal approximations. For example $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.78 .
- Unless otherwise indicated, show your work and justify all your answers. Box your final answer.

Sample solution

Exercise 1 (5+2+2+5=14 points).

Consider the curve $\vec{r}(t)=\left(\left(t^{2}-2\right)^{2}, t^{4}, t^{2}\right)$.
a) Compute $\vec{T}(t)$ for general t.

Solution: We have

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\left(4\left(t^{2}-2\right) t, 4 t^{3}, 2 t\right)=\left(4 t^{3}-8 t, 4 t^{3}, 2 t\right) \\
\left|\vec{r}^{\prime}(t)\right| & =\sqrt{32 t^{6}-64 t^{4}+68 t^{2}}=2 t \sqrt{8 t^{4}-16 t^{2}+17} \\
\vec{T}(t) & =\frac{1}{\sqrt{32 t^{6}-64 t^{4}+68 t^{2}}}\left(4 t^{3}-8 t, 8 t^{3}, 2 t\right)
\end{aligned}
$$

b) Show that the curve lies in the plane $x-y+4 z=4$.

Solution: Simply check that

$$
\left(t^{2}-2\right)^{2}-t^{4}+4 t^{2}=\left(t^{4}-4 t^{2}+4\right)-t^{4}+4 t^{2}=4
$$

c) Find one (non-zero) vector that is parallel to $\vec{B}(1)$.

Hint: Think about what b) means for the osculating plane and for the position of the vectors $\vec{T}(t), \vec{N}(t), \vec{B}(t)$. You can use those insights to solve $c)$ and d) with very little calculations.
Solution: The whole curve lies in the plane $x-y+4 z=4$. Hence this must be the osculating plane for any t. Hence $\vec{B}(t)$ is parallel to $(1,-1,4)$ at any time t.
d) Find one (non-zero) vector that is parallel to $\vec{N}(1)$.

Solution: We know that $\vec{T}(1), \vec{N}(1), \vec{B}(1)$ are pairwise orthogonal unit vectors. Hence any non-zero vector that is orthogonal to both $\vec{T}(1)$ and $\vec{B}(1)$ is parallel to $\vec{N}(1)$. Note that

$$
\vec{r}^{\prime}(1)=(4-8,4,2)=(-4,4,2)
$$

(or $\vec{T}(1)=\frac{1}{\sqrt{36}}(-4,4,2)=\frac{1}{3}(-2,2,1)$). Hence, we can simply compute

$$
\vec{r}^{\prime}(1) \times(1,-1,4)=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-4 & 4 & 2 \\
1 & -1 & 4
\end{array}\right|=(16+2,16+2,0)=(18,18,0)
$$

Hence $(1,1,0)$ is parallel to $\vec{N}(1)$.
Alternative solution: one can also compute $\vec{r}^{\prime \prime}(t)=\left(12 t^{2}-8,12 t^{2}, 2\right)$. Then $r^{\prime}(1)=(-4,4,2)$ and $r^{\prime \prime}(1)=(4,12,2)$. Then $B(1)$ is $r^{\prime}(1) \times r^{\prime \prime}(1)=(-16,16,-64)$ normalized.

Exercise 2 ($\mathbf{8 + 4 = 1 2} \mathbf{~ p o i n t s) . ~}$

Consider the surface in \mathbb{R}^{3} that is defined by equation $2 x^{2}+y z+y^{3}+x z^{2}=28$. a) Use implicit differentiation to compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Solution: We have

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(2 x^{2}+y z+y^{3}+x z^{2}\right)=4 x+y z_{x}+z^{2}+2 x \cdot z \cdot z_{x} \stackrel{!}{=} 0 \\
\Rightarrow & z_{x} \cdot[y+2 x z]=-4 x-z^{2} \Rightarrow z_{x}=-\frac{4 x+z^{2}}{y+2 x z}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(2 x^{2}+y z+y^{3}+x z^{2}\right)=z+y \cdot z y+3 y^{2}+2 x \cdot z \cdot z y \stackrel{!}{=} 0 \\
\Rightarrow & z_{y} \cdot[y+2 x z]=-z-3 y^{2} \Rightarrow z_{y}=-\frac{z+3 y^{2}}{y+2 x z}
\end{aligned}
$$

b) Compute the tangent plane of the surface at $(2,2,2)$.

Solution: For (2,2,2)

$$
z_{x}=-\frac{8+4}{2+8}=-\frac{6}{5} \quad \text { and } \quad z_{y}=-\frac{2+12}{2+8}=-\frac{7}{5}
$$

and the equation of the tangent plane is

$$
T(x, y)=2-\frac{6}{5}(x-2)-\frac{7}{5}(y-2)
$$

Exercise 3 (12 points).

The equation $z^{2}=2 x^{2}+x y+y^{2}$ describes a surface in \mathbb{R}^{3}. Find all points on this surface that are closest to $\left(x_{0}, y_{0}, z_{0}\right)=(1,2,0)$?
Use the 2 nd derivative test to show that the points you found are indeed the closest ones.

Solution: The squared distance of a point (x, y, z) to $(1,2,0)$ is

$$
(x-1)^{2}+(y-2)^{2}+(z-0)^{2}
$$

which we want to minimize over the surface. We know that each point on surface satisfies $z^{2}=2 x^{2}+x y+y^{2}$. Hence we need to minimize the function

$$
h(x, y)=(x-1)^{2}+(y-2)^{2}+2 x^{2}+x y+y^{2}=3 x^{2}+x y+2 y^{2}-2 x-4 y+5
$$

Then

$$
h_{x}(x, y)=6 x+y-2 \quad h_{y}(x, y)=x+4 y-4
$$

Both are 0 if

$$
\left|\begin{array}{c}
6 x+y-2=0 \\
x+4 y-4=0
\end{array}\right| \Rightarrow\left|\begin{array}{c}
6(4-4 y)+y-2=0 \\
x=4-4 y
\end{array}\right| \Rightarrow\left|\begin{array}{c}
22-23 y=0 \\
x=4(1-y)
\end{array}\right| \Rightarrow x=\frac{4}{23}, y=\frac{22}{23}
$$

Moreover

$$
h_{x x}=6 \quad h_{x y}=1 \quad h_{y y}=4
$$

and

$$
\left|\begin{array}{ll}
6 & 1 \\
1 & 4
\end{array}\right|=23>0
$$

Hence this is indeed a minimum. The points are

$$
\left(\frac{4}{23}, \frac{22}{23}, \sqrt{\frac{604}{529}}\right) \quad \text { and } \quad\left(\frac{4}{23}, \frac{22}{23},-\sqrt{\frac{604}{529}}\right)
$$

Exercise 4 (12 points).

Evaluate the integral

$$
\int_{0}^{1 / 2} \int_{2 y}^{1} y \cdot \cos \left(\frac{\pi}{2} x^{3}\right) d x d y
$$

Solution: The region of integration looks as follows

Hence we can switch the order of integration as

$$
\begin{aligned}
\int_{0}^{1 / 2} \int_{2 y}^{1} y \cdot \cos \left(\frac{\pi}{2} x^{3}\right) d x d y & =\int_{0}^{1} \cos \left(\frac{\pi}{2} x^{3}\right)\left(\int_{0}^{x / 2} y d y\right) d x \\
& =\int_{0}^{1} \frac{1}{8} x^{2} \cos \left(\frac{\pi}{2} x^{3}\right) d x \\
& =\left.\frac{1}{8} \cdot \frac{2}{3 \pi} \sin \left(\frac{\pi}{2} x^{3}\right)\right|_{0} ^{1}=\frac{1}{12 \pi}
\end{aligned}
$$

using integration by substitution.

