Your Name

Your Signature
\square

Student ID \#

Your TA's name

Your Quiz Section Label and Time

Problem	Points	Possible
1		10
2		8
3		10
4		16
5		50
Total		

- No books allowed. You may use a scientific calculator and one $8 \frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning (except on the "short answer" questions).
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.

1. $(10=2+3+5$ points) Consider the function $f(x, y)=\ln (2 x-y+3)$.
(a) Find and sketch the domain of this function.
(b) Sketch two level curves of this function: one corresponding to $z=0$ and another one to $z=1$.
(c) Find the linear approximation for f at $(0,2)$ and use it to estimate the value $f(0.05,1.93)$.
2. (8 points) Find and classify all critical points of the function $f(x, y)=x^{3}+y^{2}-2 x y$.
3. ($\mathbf{6}$ points) For each of the following statements circle the correct answer. No explanation of answers is needed for this problem. Be sure to explain your answers on other problems!
(a) The osculating plane to the curve $\mathbf{r}(t)=\left\langle t^{3}+e^{2 t}, 0, \cos \left(t^{4}\right)\right\rangle$ at the point $(1,0,1)$ is the $x y$-plane; the $x z$-plane; the $y z$-plane; the $x=z$ plane.
(b) Let $a_{N}(t)$ and $a_{T}(t)$ be the normal and tangential components of acceleration of a certain vector function $\mathbf{r}(t)$.
Which of the two of them can be negative? both; only a_{N}; only a_{T}.
(c) Let $z=f(x, y)$ be a function of two variables such that $f_{x}(0,0)=f_{y}(0,0)=0$, $f_{x x}(0,0)>0$ and $f_{y y}(0,0)<0$. Then $(0,0)$ is
a saddle point of $f ;$ a local minimum of $f ;$ a local maximum of f.
4. $(\mathbf{1 0}=4+6$ points) All the parts of this problem concern the vector function $\mathbf{r}(t)$ that satisfies the following conditions: the acceleration is $\mathbf{a}(t)=\left\langle\frac{1}{(t+1)^{2}}, 0, e^{-t}\right\rangle$ and the initial position and velocity are given by $\mathbf{r}(0)=\langle 0,2,0\rangle$ and $\mathbf{v}(0)=\langle 0,1,-1\rangle$.
(a) Compute the normal component of the acceleration vector at $t=0$.
(b) Find this vector function $\mathbf{r}(t)$.

5. $(16=8+8$ points $)$

(a) Evaluate the integral

$$
\int_{0}^{1} \int_{x^{2}}^{1} x \cdot \sin \left(\pi y^{2}\right) d y d x
$$

(b) Calculate the average value of the function $f(x, y)=\left(x^{2}+y^{2}\right)^{3 / 2}$ on the region in the first quadrant bounded by the lines $y=0$ and $y=\sqrt{3} x$ and the circle $x^{2}+y^{2}=9$.

