Math 126, Section C - Winter 2015 Midterm II
 March 3, 2015

Name: \qquad
Student ID Number:
Section: CA 11:30-12:20 by Sam
 CB 12:30-1:20 by Sam $\quad \square$
CD 12:30-1:20 by Ru-Yu

exercise	possible	score
1	12	
2	14	
3	12	
4	12	
total	50	

- Check that this booklet has all the exercises indicated above.

- TURN OFF YOUR CELL PHONE.

- Write your name and your student ID.
- This is a 50 minute test.
- You may use a scientific calculator and one 8.5×11 inch sheet of (twosided) handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Unless otherwise indicated, your answers should be exact instead of decimal approximations. For example $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.78 .
- Unless otherwise indicated, show your work and justify all your answers.
- Do not use scratch paper! Do your scratch work at the bottom of the page or on the back side of the preceding sheet.

Sample solution

Exercise 1 (12 points).

The equation

$$
x y z+2 x^{2} y^{2}-3 y^{2} z^{3}=-2
$$

determines a surface in \mathbb{R}^{3}. Find the tangent plane to the surface at the point $(1,2,1)$.
Hint: Use implicit differentiation.
Solution: We consider $z(x, y)$ as a function of x, y. Then around the point $(1,2,1)$, the function $z(x, y)$ is determined by the equation

$$
x y \cdot z(x, y)+2 x^{2} y^{2}-3 y^{2} z(x, y)^{3}=-2 .
$$

Taking partial derivatives on both sides of the equation, we obtain

$$
\begin{aligned}
& y z+x y z_{x}+4 x y^{2}-9 y^{2} z^{2} z_{x} \stackrel{!}{=} 0 \Rightarrow y z+4 x y^{2}=\left(9 y^{2} z^{2}-x y\right) z x \\
\Rightarrow & z_{x}=\frac{y z+4 x y^{2}}{9 y^{2} z^{2}-x y} x=1, y=2, z=1 \\
= & \frac{9}{17}
\end{aligned}
$$

and

$$
\begin{aligned}
& x z+x y z y+4 x^{2} y-6 y z^{3}-9 y^{2} z^{2} z_{y} \stackrel{!}{=} 0 \Rightarrow x z+4 x^{2} y-6 y z^{3}=\left(9 y^{2} z^{2}-x y\right) z y \\
\Rightarrow & z_{y}=\frac{x z+4 x^{2} y-6 y z^{3}}{9 y^{2} z^{2}-x y} \stackrel{x=1, y=2, z=1}{=}-\frac{3}{34}
\end{aligned}
$$

The equation of the plane is then

$$
z=\frac{9}{17}(x-1)-\frac{3}{34} \cdot(y-2)+1
$$

Exercise 2 (10+2+2=14 points).

Consider the function

$$
f(x, y)=\frac{1}{x^{2}+1}-x y+y
$$

a) Determine and classify all critical points of f.
b) We want to understand better, how the function f behaves for points (x, y) that have a large magnitude.
i) Find a vector function $\vec{r}(t)=(x(t), y(t))$ so that $f(x(t), y(t)) \rightarrow \infty$ as $t \rightarrow \infty$.
ii) Find a vector function $\vec{r}(t)=(x(t), y(t))$ so that $f(x(t), y(t)) \rightarrow-\infty$ as $t \rightarrow \infty$.

Solution: For a). We have

$$
f_{x}=-\frac{2 x}{\left(x^{2}+1\right)^{2}}-y \quad f_{y}=-x+1
$$

Then we solve

$$
\left[\begin{array}{c}
f_{x}=0 \\
f_{y}=0
\end{array}\right] \Leftrightarrow\left[\begin{array}{c}
-\frac{2 x}{\left(x^{2}+1\right)^{2}}-y=0 \\
-x+1=0
\end{array}\right] \Leftrightarrow\left[\begin{array}{c}
-\frac{2}{(1+1)^{2}}-y=0 \\
x=1
\end{array}\right] \Leftrightarrow\left[\begin{array}{c}
y=-\frac{1}{2} \\
x=1
\end{array}\right]
$$

Hence the only critical point is $(x, y)=\left(1,-\frac{1}{2}\right)$. The Hessian matrix is

$$
\left(\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
\frac{8 x^{2}}{\left(x^{2}+1\right)^{3}}-\frac{2}{\left(x^{2}+1\right)^{2}} & -1 \\
-1 & 0
\end{array}\right)
$$

Plugging in $(x, y)=\left(1,-\frac{1}{2}\right)$ we get

$$
\left|\begin{array}{ll}
f_{x x}\left(1,-\frac{1}{2}\right) & f_{x y}\left(1,-\frac{1}{2}\right) \\
f_{x y}\left(1,-\frac{1}{2}\right) & f_{y y}\left(1,-\frac{1}{2}\right)
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2} & -1 \\
-1 & 0
\end{array}\right|=-1<0
$$

Hence $\left(1,-\frac{1}{2}\right)$ is a saddle point.
b) i) For example for $\vec{r}(t)=(0, t)$ the function value goes to ∞ for $t \rightarrow \infty$ and to $-\infty$ for $t \rightarrow-\infty$.
ii) For example for $\vec{r}(t)=(t, 1)$ [or $\vec{r}(t)=(0,-t)]$, the function tends to $-\infty$ as $t \rightarrow \infty$.

Exercise 3 (12 points).

We want to construct a lamina in form of a ring that has inner radius 1 and thickness a. If the density of the lamina is given by

$$
\rho(x, y)=x^{4}+2 x^{2} y^{2}+y^{4},
$$

then how do we need to choose a so that the mass of the lamina will be exactly $728 \cdot \frac{\pi}{3}$?

Observe that $\rho(x, y)=\left(x^{2}+y^{2}\right)^{2}$ (which is r^{4} in polar coordinates). We integrate

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{1}^{1+a} r \cdot \rho(r \cdot \sin (\theta), r \cdot \sin (\theta)) d r d \theta \\
= & \int_{0}^{2 \pi} \int_{1}^{1+a} r \cdot\left(\left(r \sin (\theta)^{2}+(r \cos (\theta))^{2}\right)^{2} d r d \theta\right. \\
= & \int_{0}^{2 \pi} \int_{1}^{1+a} r^{5} \cdot \underbrace{\left(\sin ^{2}(\theta)+\cos ^{2}(\theta)\right)^{2}}_{=1} d r d \theta \\
= & \int_{0}^{2 \pi}\left[\frac{1}{6} r^{6}\right]_{r=1}^{r=1+a} d \theta \\
= & \frac{1}{6} \int_{0}^{2 \pi}\left((1+a)^{6}-1\right) d \theta \\
= & \frac{1}{6} \cdot 2 \pi \cdot\left((1+a)^{6}-1\right)
\end{aligned}
$$

This quantity is $728 \cdot \frac{\pi}{3}$ exactly for $a=2$.

Exercise 4 (12 points).

Compute the integral

$$
\int_{-4}^{0} \int_{\sqrt{-y}}^{2} y \cdot \sqrt{5+x^{5}} d x d y
$$

Hint: Reverse the order of integration.
Solution: We reverse the order of integration and obtain

$$
\begin{aligned}
\int_{-4}^{0} \int_{\sqrt{-y}}^{2} y \cdot \sqrt{5+x^{5}} d x d y & =\int_{0}^{2} \int_{-x^{2}}^{0} y \cdot \sqrt{5+x^{5}} d y d x \\
& =\int_{0}^{2}\left[\frac{1}{2} y^{2} \sqrt{5+x^{5}}\right]_{y=-x^{2}}^{0} d x \\
& =-\frac{1}{2} \int_{0}^{2} x^{4} \sqrt{5+x^{5}} d x \\
& =-\frac{1}{10} \int_{0}^{2} \underbrace{5 x^{4}}_{=\frac{d}{d x}\left(5+x^{5}\right)} \sqrt{5+x^{5}} d x \\
& =-\frac{1}{10} \cdot \frac{2}{3}\left[\left(5+x^{5}\right)^{3 / 2}\right]_{0}^{2} \\
& =-\frac{1}{15}\left(37^{3 / 2}-5^{3 / 2}\right) \approx-14.2587
\end{aligned}
$$

