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• This exam consists of five problems on four double-sided pages.

• Show all work for full credit.

• You may use a TI-30X IIS calculator during this exam. Other calculators and electronic

devices are not permitted.

• You do not need to simplify your answers.

• If you use a trial-and-error or guess-and-check method when a more rigorous method is

available, you will not receive full credit.

• Draw a box around your final answer to each problem.

• Do not write within 1 centimeter of the edge! Your exam will be scanned for grading.

• If you run out of room, write on the back of the first or last page and indicate that you

have done so. If you still need more room, raise your hand and ask for an extra page.

• You may use one hand-written double-sided 8.5” by 11” page of notes.

• You have 50 minutes to complete the exam.

–



1. [10 points total] Consider the points A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1).

(a) [3 points] Find the equation for the plane passing through the points A, B, C in the

form z = a� bx� cy.

(b) [2 points] Write down the function f(x, y) representing the square of the distance

from the origin (0, 0, 0) to the point (x, y, a� bx� cy) on the plane from part (a).

(c) [5 points] Find the critical points of the function f(x, y) from part (b) and use the

second derivative test to find the point on the plane from part (a) which is closest to

the origin (0, 0, 0).



2. [10 points] Find and classify the critical points of the function f(x, y) = x3 + y3 � 3xy.



3. [10 points] Compute the double integral
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where R = [0, 1]⇥ [0, 2] is the rectangle {(x, y) : 0  x  1, 0  y  2}.



4. [10 points] Compute the volume of the solid that lies above the region in the xy-plane

bounded by the curve y = x2
, the horizontal line y = 1, and the y-axis; and under the

surface z = xy.



5. [10 points total]

(a) [2 points] Write down the function f(x, y) that represents the square of the distance

from the point (11, 22, 0) to the point (x, y, x2 + y2) on the paraboloid z = x2 + y2.

(b) [3 points] Show that the (1, 2) is a critical point of the function f(x, y) from part (a).

(c) [5 points] Show that (1, 2, 5) is the closest point on the paraboloid z = x2 + y2 to

the point (11, 22, 0) by showing, using the second derivative test, that (1, 2) is a local

minimum of the function f(x, y) from part (a).


