1. [8 points] Write the equation of the plane tangent to $z=x^{2} y-x$ at the point $(2,3,10)$.

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=2 x y-1 \text {, so at }(2,3,10), \frac{\partial z}{\partial x}=11 \\
& \frac{\partial z}{\partial y}=x^{2} \text {, so at }(2,3,10), \frac{\partial z}{\partial y}=4
\end{aligned}
$$

So the tangent plane is $z=10+11(x-2)+4(y-3)$

$$
\text { or } z=11 x+4 y-24
$$

2. [8 points] An integral on the first page? Weird. Compute $\int_{0}^{1} \int_{\sqrt{3} x}^{\sqrt{4-x^{2}}} x \sqrt{x^{2}+y^{2}} d y d x$. H_{m}, sounds polar to me.
Lefts draw a picture:

$$
\begin{aligned}
& \text { So this is } \\
& \begin{aligned}
&\left.\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \int_{0}^{2}\left(r^{3} \cos \theta\right) d r d \theta=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\left(\frac{1}{4} \cos \theta r^{4}\right)\right]_{0}^{2} d \theta=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 4 \cos \theta d \theta \\
&=4 \sin \theta]^{\frac{\pi}{2}}=4-2 \sqrt{3}
\end{aligned}
\end{aligned}
$$

3. [2 points each] Here are six multivariable functions and their names:
(Andrea) $f(x, y)=x+y$
(Dorian) $f(x, y)=x-y$
(Barry) $f(x, y)=x^{2}+y^{2}$
(Chantal) $f(x, y)=\sqrt{x^{2}+y^{2}}$

Write the name of each function in the box next to its level curves below.
You do not need to show any work for this problem.

This problem is sponsored by the triangle T with vertices $(0,0),(0,1)$, and $(1,1)$.
4. [12 points] Let $f(x, y)=x^{2}+2 y^{2}-x y-2 x-y$.

Find the absolute minimum and maximum values of f on the domain T.
(Just to be clear: T includes both the interior and the boundary of the triangle.)

Critical pints inside

Points to check:
Sides

$$
f(0,0)=0
$$

$f(0,1)=1 \ll_{\text {max }}$
$f(1,1)=-1$

$$
f\left(0, \frac{1}{4}\right)=\frac{-1}{8}
$$

$$
f\left(\frac{3}{4}, \frac{3}{4}\right)=\frac{-9}{8}
$$

Left edge: $x=0$

$$
\begin{aligned}
& f(0, y)=2 y^{2}-y \\
& f^{\prime}=4 y-1=0, \text { so } y=\frac{1}{4}: \quad \operatorname{chech}\left(0, \frac{1}{4}\right)
\end{aligned}
$$

Top edge: $y=1$

$$
f(x, 1)=x^{2}-3 x+1
$$

$f^{\prime}=2 x-3=0 \rightarrow x=\frac{3}{2}$, not in domain
Right edge: $y=x$

$$
\begin{aligned}
& f(x, x)=2 x^{2}-3 x \\
& f^{\prime}=4 x-3=0 \rightarrow x=\frac{3}{4}: \operatorname{check}\left(\frac{3}{4}, \frac{3}{4}\right)
\end{aligned}
$$

Also check vertices: $(0,0),(0,1),(1,1)$

This problem is also sponsored by the triangle T with vertices $(0,0),(0,1)$, and $(1,1)$.
5. Let \mathcal{S} be the solid bounded above by $z=e^{y^{2}}$ and below by T in the $x y$-plane.
(a) [5 points] Set up a double integral for the volume of \mathcal{S} in two different ways, once using $d x d y$ and once using $d y d x$. (Don't evaluate it yet.)

(b) [5 points] Okay, now find the volume of \mathcal{S}. Use whichever setup you prefer.

$$
\left.\int_{0}^{1} \int_{0}^{y} e^{y^{2}} d x d y=\int_{0}^{1}\left(x e^{y^{2}}\right)\right]_{0}^{y} d y=\int_{0}^{1} y e^{y^{2}}=\frac{1}{2} \int_{0}^{1} e^{u} d u=\frac{1}{2}(e-1)
$$

6. (a) [7 points] Find all the critical points (in \mathbb{R}^{2}) of $f(x, y)=x \sin (y)+y^{2}$.
(There are a lot of them! You should list them all somehow, but I don't really care about the format of your answer.)

$$
f_{x}(x, y)=\sin (y)=0 \rightarrow y=\ldots-\pi, 0, \pi, 2 \pi, \ldots
$$

$$
f_{y}(x, y)=x \cos (y)+2 y \quad\left\{\begin{array}{c}
\text { if } y=\ldots-\pi, \pi, 3 \pi, \ldots \\
\text { then cos } y=-1
\end{array}\right.
$$

$$
\text { then } \cos y=-1
$$

$$
\begin{aligned}
& \text { if } y=\ldots, 2 \\
& \text { then } \cos y= \\
& x=-2 y
\end{aligned}
$$

$$
\text { so ... }(4 \pi,-2 \pi),(0,0),(-4 \pi, 2 \pi), \ldots
$$

$$
\text { In general: } \ldots(-6 \pi,-3 \pi),(4 \pi,-2 \pi),(-2 \pi,-\pi)(0,0),(2 \pi, \pi),(-4 \pi, 2 \pi) \ldots
$$

or if you're fancy: $\frac{(-4 k \pi, 2 k \pi) \&(2(2 h+1) \pi,(2 k+1) \pi)}{\text { for integers } k}$
(b) [3 points] Classify your critical points from part (a) as local maxima, local minima, or saddle points.

$$
\begin{aligned}
& f_{x x}(x, y)=0 \\
& f_{x y}(x, y)=\cos y= \pm 1 \text { at each crit. point. } \\
& \text { So } D(a, b)=0 \cdot(\text { (something })-(\pm 1)^{2}=-1 \\
& \text { so they real saddle pits }
\end{aligned}
$$

