\qquad
\qquad

MIDTERM II

Math 126, Section A
February 22, 2007

Problem	Total Points	Score
1	12	
2	12	
3	12	
4	14	
Total	50	
5(Bonus)	3	

- You may use a scientific calculator and one one-sided sheet of handwritten notes. No other notes, books or calculators are allowed. Please turn off your cell phone.
- Show all your work to get full credit.
- Read instructions for each problem CAREFULLY.
- Leave all your answers in EXACT form.
- Check your work!

1. (12pts) Consider the curve given by the equation in polar coordinates

$$
r=4 \cos \theta+\sin \theta .
$$

(a) (6 pts$)$ Find the Cartesian equation of the curve. Sketch the curve.
(b) (6pts) Find the equation of the tangent line to the curve at the point $\theta=\pi / 4$.
2. (12pts) Consider the parametric curve given by the vector function $\vec{r}(t)=\left(t, t^{2}, t^{3}\right)$. (a) (4pts) Find the equation of the normal plane to the curve at the point when $t=1$. Hint. The normal plane is the plane perpendicular to the tangent line.
(b) $(4 \mathrm{pts})$ Find the equation of the normal plane to the curve at the point $(-1,1,-1)$.
(c) (4pts) Find the parametric equations of the line of intersection of the planes from (a) and (b).
3. (12pts) Consider the surface defined by the equation $f(x, y)=x^{2} y+y^{3}+x$.
(a) $(6 \mathrm{pts})$ Find the tangent plane to the surface at the point $(-2,1,3)$.
(b) $(6 \mathrm{pts})$ Find all second partial derivatives of $f(x, y)$.
4. (14pts) (a)(5pts) Find the velocity and position vectors of a particle that has the acceleration vector

$$
\vec{a}(t)=(2, \cos t, \sin t),
$$

the initial velocity $\vec{v}(0)=\langle 0,0,-1\rangle$ and the initial position $\vec{r}(0)=\langle 1,1,0\rangle$.
(b) (1pt) Find the position vector at the time $t=1$.

Answer the following two questions in any order. Simplify your answers as much as possible.
(c)(4pts) Find the curvature at $t=1$.
(d) $(4 \mathrm{pts})$ Find the length of the projection of the acceleration vector at $t=1$ on the unit normal vector at $t=1$.
5. (3pts) (Bonus, full credit only). Show that if a particle moves with the constant speed, then the velocity and acceleration vectors are orthogonal.

