Let Γ be a Jordan curve and μ a positive measure on Γ . We say that μ satisfies condition (D) if there is a constant C such that $\mu(I) \leq C\mu(J)$ whenever I and J are adjacent arcs with diam(I) = diam(J). We will say that μ satisfies condition (M) if there is a constant C such that diam $(I) \leq C \text{diam}(J)$ whenever I and J are adjacent arcs with $\mu(I) = \mu(J)$. The following examples show that (M) does not imply (D) in general. For set functions fand g, we will write $f(I) \sim g(J)$ when there exists a constant c > 0 independent of I and J such that $1/c \leq \frac{f(I)}{g(J)} \leq c$.

Example 1. Let $n \ge 0$ be an integer and for $k = 0, 1, \dots, n$ set $z_{4k} = \frac{2k}{2n+1}$, $z_{4k+1} = \frac{2k}{2n+1} + i$, $z_{4k+2} = \frac{2k+1}{2n+1} + i$ and $z_{4k+3} = \frac{2k+1}{2n+1}$. Let γ_n be the polygonal line connecting $z_0 = 0$, $z_1, \dots, z_{4n+3} = 1$ in this order with horizontal and vertical line segments. Set $\sigma = [1, 1 + \sqrt{2}]$ and let μ be the arc length measure on $\gamma_n \cup \sigma$. The next picture shows the curve $\gamma_3 \cup \sigma$.

Let I, J be adjacent arcs on $\gamma_n \cup \sigma$ with $\mu(I) = \mu(J)$. Note that if $\mu(I) < 2$ then $\operatorname{diam}(I) \sim \mu(I)$. On the other hand, if $\mu(I) \geq 2$, we have that $1 \leq \operatorname{diam}(I) \leq \sqrt{2}$. This shows that

$$\frac{\operatorname{diam}(I)}{\operatorname{diam}(J)} \le 2. \tag{1}$$

Moreover we have that $\operatorname{diam}(\gamma_n) = \operatorname{diam}(\sigma)$ while

$$\frac{\mu(\gamma_n)}{\mu(\sigma)} = \frac{2n+3}{\sqrt{2}}.$$
(2)

Observe that if we scale $\gamma_n \cup \sigma$ by a factor c > 0 and μ by a factor d > 0, then (1) and (2) remain true since $\frac{\operatorname{diam}(cI)}{\operatorname{diam}(cJ)} = \frac{\operatorname{diam}(I)}{\operatorname{diam}(J)}$ and $\frac{d\mu(cI)}{d\mu(cJ)} = \frac{\mu(I)}{\mu(J)}$.

Example 2. Let $T_n = 2^{-n}(\gamma_n \cup \sigma) + 2(1 + \sqrt{2})(1 - 2^{-n})$ and $\Gamma = (\bigcup_{n \ge 0} T_n) \cup \tau$ where τ is the polygonal line connecting $2(1 + \sqrt{2}), 4(1 + \sqrt{2}), 4(1 + \sqrt{2}) - i, -i$ and 0, in this order, with horizontal or vertical line segments. Observe that Γ is a closed Jordan curve.

The curve Γ .

For $E \subset \Gamma$, let E^* be the vertical projection of E onto \mathbb{R} and define a measure μ on Γ by

$$\mu(I) = \sum_{n \ge 0} |T_n^*| \frac{|I \cap T_n|}{|T_n|} + |I \cap \tau|,$$

where $|\cdot|$ denotes arc length.

Now let I be an arc on Γ such that $T_n \subseteq I$ but $T_{n-1} \nsubseteq I$. Because

$$\mu(T_n) = |T_n^*| = \mu(\bigcup_{k>n} T_k) = 2^{-n}(1+\sqrt{2}),$$

we have that $\mu(I) \sim \max(|T_n^*|, |I \cup \tau|)$. Moreover, we have that

$$\operatorname{diam}(I) \sim \max(\operatorname{diam}(T_n), \operatorname{diam}(I \cap \tau))$$

because

$$\max(\operatorname{diam}(T_n),\operatorname{diam}(I\cap\tau)\leq\operatorname{diam}(I)\leq\sum_{j\geq n-1}\operatorname{diam}(T_j)+\operatorname{diam}(I\cap\tau).$$

We conclude that if I and J are two adjacent arcs on Γ with $\mu(I) = \mu(J)$ and such that $T_n \subseteq I, T_{n-1} \notin I$ for some n, then diam $(I) \sim \text{diam}(J)$.

If both I and J are included in some T_n , then diam $(I) \sim \text{diam}(J)$ by the proof of example 1. If I meets only T_{n-1} and T_n but does not contain either, then by considering the cases diam $(J) \geq 2^{-n}$ and diam $(J) < 2^{-n}$ it is not hard to see that we must have diam $(I) \sim \text{diam}(J)$. This shows that μ satisfies condition (M).

Finally note that μ does not satisfy condition (D) since the adjacent arcs $I_n = 2^{-n}\gamma_n + 2(1+\sqrt{2})(1-2^{-n})$ and $J_n = 2^{-n}\sigma + 2(1+\sqrt{2})(1-2^{-n})$ satisfy diam $(I_n) = \text{diam}(J_n)$ and $\frac{\mu(I_n)}{\mu(J_n)} = \frac{2n+3}{\sqrt{2}}$.