Let Γ be a Jordan curve and μ a positive measure on Γ. We say that μ satisfies condition (D) if there is a constant C such that $\mu(I) \leq C \mu(J)$ whenever I and J are adjacent arcs with $\operatorname{diam}(I)=\operatorname{diam}(J)$. We will say that μ satisfies condition (M) if there is a constant C such that $\operatorname{diam}(I) \leq C \operatorname{diam}(J)$ whenever I and J are adjacent arcs with $\mu(I)=\mu(J)$. The following examples show that (M) does not imply (D) in general. For set functions f and g, we will write $f(I) \sim g(J)$ when there exists a constant $c>0$ independent of I and J such that $1 / c \leq \frac{f(I)}{g(J)} \leq c$.

Example 1. Let $n \geq 0$ be an integer and for $k=0,1, \cdots, n$ set $z_{4 k}=\frac{2 k}{2 n+1}$, $z_{4 k+1}=\frac{2 k}{2 n+1}+i, z_{4 k+2}=\frac{2 k+1}{2 n+1}+i$ and $z_{4 k+3}=\frac{2 k+1}{2 n+1}$. Let γ_{n} be the polygonal line connecting $z_{0}=0, z_{1}, \cdots, z_{4 n+3}=1$ in this order with horizontal and vertical line segments. Set $\sigma=[1,1+\sqrt{2}]$ and let μ be the arc length measure on $\gamma_{n} \cup \sigma$. The next picture shows the curve $\gamma_{3} \cup \sigma$.

Let I, J be adjacent arcs on $\gamma_{n} \cup \sigma$ with $\mu(I)=\mu(J)$. Note that if $\mu(I)<2$ then $\operatorname{diam}(I) \sim \mu(I)$. On the other hand, if $\mu(I) \geq 2$, we have that $1 \leq \operatorname{diam}(I) \leq \sqrt{2}$. This shows that

$$
\begin{equation*}
\frac{\operatorname{diam}(I)}{\operatorname{diam}(J)} \leq 2 \tag{1}
\end{equation*}
$$

Moreover we have that $\operatorname{diam}\left(\gamma_{n}\right)=\operatorname{diam}(\sigma)$ while

$$
\begin{equation*}
\frac{\mu\left(\gamma_{n}\right)}{\mu(\sigma)}=\frac{2 n+3}{\sqrt{2}} . \tag{2}
\end{equation*}
$$

Observe that if we scale $\gamma_{n} \cup \sigma$ by a factor $c>0$ and μ by a factor $d>0$, then (1) and (2) remain true since $\frac{\operatorname{diam}(c I)}{\operatorname{diam}(c J)}=\frac{\operatorname{diam}(I)}{\operatorname{diam}(J)}$ and $\frac{d \mu(c I)}{d \mu(c J)}=\frac{\mu(I)}{\mu(J)}$.

Example 2. Let $T_{n}=2^{-n}\left(\gamma_{n} \cup \sigma\right)+2(1+\sqrt{2})\left(1-2^{-n}\right)$ and $\Gamma=\left(\bigcup_{n \geq 0} T_{n}\right) \cup \tau$ where τ is the polygonal line connecting $2(1+\sqrt{2}), 4(1+\sqrt{2}) 4(1+\sqrt{2})-i,-i$ and 0 , in this order, with horizontal or vertical line segments. Observe that Γ is a closed Jordan curve.

The curve Γ.

For $E \subset \Gamma$, let E^{*} be the vertical projection of E onto \mathbb{R} and define a measure μ on Γ by

$$
\mu(I)=\sum_{n \geq 0}\left|T_{n}^{*}\right| \frac{\left|I \cap T_{n}\right|}{\left|T_{n}\right|}+|I \cap \tau|,
$$

where $|\cdot|$ denotes arc length.
Now let I be an arc on Γ such that $T_{n} \subseteq I$ but $T_{n-1} \nsubseteq I$. Because

$$
\mu\left(T_{n}\right)=\left|T_{n}^{*}\right|=\mu\left(\bigcup_{k>n} T_{k}\right)=2^{-n}(1+\sqrt{2}),
$$

we have that $\mu(I) \sim \max \left(\left|T_{n}^{*}\right|,|I \cup \tau|\right)$. Moreover, we have that

$$
\operatorname{diam}(I) \sim \max \left(\operatorname{diam}\left(T_{n}\right), \operatorname{diam}(I \cap \tau),\right.
$$

because

$$
\max \left(\operatorname{diam}\left(T_{n}\right), \operatorname{diam}(I \cap \tau) \leq \operatorname{diam}(I) \leq \sum_{j \geq n-1} \operatorname{diam}\left(T_{j}\right)+\operatorname{diam}(I \cap \tau)\right.
$$

We conclude that if I and J are two adjacent arcs on Γ with $\mu(I)=\mu(J)$ and such that $T_{n} \subseteq I, T_{n-1} \nsubseteq I$ for some n , then $\operatorname{diam}(I) \sim \operatorname{diam}(J)$.
If both I and J are included in some T_{n}, then $\operatorname{diam}(I) \sim \operatorname{diam}(J)$ by the proof of example 1. If I meets only T_{n-1} and T_{n} but does not contain either, then by considering the cases $\operatorname{diam}(J) \geq 2^{-n}$ and $\operatorname{diam}(J)<2^{-n}$ it is not hard to see that we must have $\operatorname{diam}(I) \sim$ $\operatorname{diam}(J)$. This shows that μ satisfies condition (M).
Finally note that μ does not satisfy condition (D) since the adjacent arcs $I_{n}=2^{-n} \gamma_{n}+$ $2(1+\sqrt{2})\left(1-2^{-n}\right)$ and $J_{n}=2^{-n} \sigma+2(1+\sqrt{2})\left(1-2^{-n}\right)$ satisfy $\operatorname{diam}\left(I_{n}\right)=\operatorname{diam}\left(J_{n}\right)$ and $\frac{\mu\left(I_{n}\right)}{\mu\left(J_{n}\right)}=\frac{2 n+3}{\sqrt{2}}$.

