
Existence and Uniqueness

In the handout on Picard iteration, we proved a local existence and uniqueness theorem for first

order differential equations. The conclusion was weaker than our conclusion for first order linear

differential equations because we only proved that there existed a solution on a small interval. The

theorem for linear equations had a better conclusion because we found an explicit formula for a

solution. For linear differential equations with order larger than 1 there is no general formula that

always works. In this note, we will show how to deduce the theorem we already have for first order

linear equations via Picard iteration. Then we will prove the analogous theorems for higher order

equations with a similar proof.

Suppose we wish to solve the initial value problem

y′(t) = f(t, y(t)) with y(t0) = a0. (1)

For a > 0 let R = {(t, y) : |t− t0| ≤ a, −∞ < y < ∞}.

Suppose

(i) f(t, y) is continuous as a function of t, for all (t, y) ∈ R and

(ii) there is a constant K so that for all (t, y) and (t, z) in R

|f(t, y)− f(t, z)| ≤ K|y − z|. (2)

Note that we have not made any assumptions about the maximum of |f |. Let c = min
(

a, 1
2K

)

.

and set

F = {φ : φ is continuous on |t− t0| ≤ a and φ(t0) = a0}.

Let T be the same operator as in the proof of the Picard-Lindelöf Theorem (PLT). In this case,

because R is the full strip, the operator T will automatically map F into F : there is no restriction

on how big T (y) is. Then by the same proof, T has a fixed point, and so there is a unique solution

to (1) on the interval {t : |t − t0| ≤ c}. If a ≤ 1
2K then there is a solution on the full interval

|t − t0| ≤ a. If a > 1
2K

, let tj = t0 +
j

2K
, j = 0, 1, 2, 3, . . .. Let y1 be the value of the solution on

[t0, t1] at t = t1. We can then solve the same equation with initial value y(t1) = y1 on the interval

[t1, t2] provided t2 ≤ t0 + a. The previous solution agrees with this new solution on [t0, t1] by the

uniqueness part of the PLT. Repeat the process on [t2, t3], and after a finite number of such steps

we proved the existence of a unique solution on [t0, a]. For the very last step if tn > a, then we

can only guarantee a solution as far as t = a by the theorem. Similarly we can extend to the left

so that we have a solution on t0 − a ≤ t ≤ t0 + a. This proves:
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Corollary. Let R = {(t, y) : |t− t0| ≤ a, −∞ < y < ∞}. Suppose there is a K < ∞ so that

(i) f(t, y) is continuous as a function of t for all (t, y) ∈ R and

(ii) |f(t, y)− f(t, z)| ≤ K|y − z| for all (t, y) ∈ R and (t, z) ∈ R.

Then there exists a unique function y(t) satisfying (1) for all t with |t− t0| ≤ a.

For example the equation y′ + Ay + B = 0 with y(t0) = a0, where A and B are continuous

on a (closed) interval I, has a unique solution by the Corollary because f(t, y) = −A(t)y − B(t)

satisfies

|f(t, y)− f(t, z)| = |A(t)||y − z| ≤ K|y − z|,

where K = max{|A(t)| : t ∈ I}. This is the content of our previous existence and uniqueness

theorem for first order linear equations.

Similarly the non-linear equation y′ = A(t) sin y +B(t), with y(t0) = a0 has a unique solution

on any closed interval containing t0 on which A and B are continuous, because

| sin(y)− sin(z)| ≤

∣

∣

∣

∣

∫ y

z

− cos tdt

∣

∣

∣

∣

≤ |y − z|.

Higher order differential equations

Next we will treat second order differential equations. Suppose we want to solve

y′′(t) = f(t, y(t), y′(t)) with y(t0) = a0 and y′(t0) = a1.

Let v = y′. Then we can rewrite our equation as a coupled pair of equations:

y′ = v and v′ = f(t, y, v) with y(t0) = a0 and v(t0) = a1. (3)

This is equivalent to the pair of implicit equations

y(t) = a0 +

∫ t

t0

v(s)ds and v(t) = a1 +

∫ t

t0

f(s, y(s), v(s))ds. (4)

Proving (3) and (4) are equivalent is just like proving the first order differential equation is

equivalent to the integral equation in the proof of the PLT. Check it yourself to see if you understand

why.

As in the proof of the PLT, we define an operator T which maps pairs of functions to pairs of

functions given by
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T (y, v)(t) = (a0 +

∫ t

t0

v(s)ds, a1 +

∫ t

t0

f(s, y(s), v(s))ds).

Instead of using the absolute value to determine the distance between two numbers, we use

the usual distance in the plane to measure the distance between pairs of numbers:

||(y, v) − (z, w)|| =
√

(y − z)2 + (v − w)2.

For continuous functions y, v, z, w on an closed interval I we define

||(y, v) − (z, w)|| = max
t∈I

√

(y(t)− z(t))2 + (v(t) − w(t))2.

We suppose now that f(t, y, v) is continuous as a function of t for (t, y, v) in R = {(t, y, v) :

|t − t0| ≤ a and ||(y(t), v(t)) − (a0, a1)|| ≤ b}. We also suppose that a Lipschitz condition holds:

There is a K < ∞ so that for all (t, y, v), (t, z, w) ∈ R:

|f(t, y, v) − f(t, z, w)| ≤ K||(y, v) − (z, w)||. (5)

As in the proof of PLT, set y0(t) = a0 and v0(t) = a1 for all t ∈ I, and (yn+1(t), vn+1(t)) =

T (yn, vn)(t). By exactly the same proof as before, the fixed point theorem gives a unique solution

(y, v) to (4) on some interval J contained in I and containing the point t0. Hence y is the unique

solution to (3) on J . If the Lipschitz condition (5) holds for all b < ∞ then as in the first part of

this note, we obtain a unique solution on all of the interval I.

Initial value second order linear differential equations can be written in the form

y′′(t) = c(t) + a(t)y(t) + b(t)y′(t),

where a, b, c are continuous functions and y(t0) = a0 and y′(t0) = a1. Thus f(t, y, v) = ay + bv+ c,

and for t in a closed interval I

|f(t, y, v) − f(t, z, w)| ≤

(

max
t∈I

|a(t)|

)

|y − z|+

(

max
t∈I

|b(t)|

)

|v − w|.

If |a(t)| ≤ K/2 and |b(t)| ≤ K/2 for all t ∈ I then (5) holds because |y − z| ≤
√

|y − z|2 + |v −w|2

and |v −w| ≤
√

|y − z|2 + |v − w|2.

For differential equations of higher order:

y(n) = f(t, y, y′, y′′, . . . , y(n−1)),
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with y(t0) = a0, y
′(t0) = a1, . . . , y

(n−1)(t0) = an−1, we proceed similarly using

||(y1, y2, . . . , yn)− (z1, z2, . . . , zn)|| =





n
∑

j=1

|yj − zj |
2





1

2

.

Define functions

vk = y(k), k = 0, . . . , n− 1,

where y(0) is the function y. Then

v′n−1 = f(t, y, v1, . . . , vn−1),

and for j = 0, . . . , n− 2

v′j = vj+1.

The operator T is given by

T (v0, . . . , vn−1) = (w0, . . . , wn−1)

where

wj−1(t) = aj−1 +

∫ t

t0

vj(s)ds

for j = 1, . . . , n− 1 and

wn−1(t) = an−1 +

∫ t

t0

f(s, v0(s), . . . , vn−1(s))ds.

We leave it as an exercise to state the existence and uniqueness theorems for linear and non-linear

nth order (ordinary) differential equations. The proofs are the same as the proofs of the second

order theorems, using the definitions above.
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